5 research outputs found

    Accuracy of physician-estimated probability of brain injury in children with minor head trauma

    Get PDF
    Objective: To evaluate the accuracy of physician estimates of the probability of intracranial injury in children with minor head trauma. Methods: This is a subanalysis of a large prospective multicentre cohort study performed from July 2001 to November2005. During data collection for the derivation of a clinical prediction rule for children with minor head trauma, physicians indicated their estimate of the probability of brain injury visible on computed tomography (P-Injury) and the probability of injury requiring intervention (P-Intervention) by choosing one of the following options: 0%, 1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40%, 50%, 75%, 90%, and 100%. We compared observed frequencies to expected frequencies of injury using Pearson’s χ2-test in analyses stratified by the level of each type of predicted probability and by year of age. Results: In 3771 eligible subjects, the mean predicted risk was 4.6% (P-Injury) and 1.4% (P-Intervention). The observed frequency of injury was 4.1% (any injury) and 0.6% (intervention). For all levels of P-Injury from 1% to 40%, the observed frequency of injury was consistent with the expected frequency. The observed frequencies for the 50%, 75%, and 90% levels were lower than expected (p\u3c0.05). For estimates of P-Intervention, the observed frequency was consistently higher than the expected frequency. Physicians underestimated risk for infants (mean P-Intervention 6.2%, actual risk 12.3%, p\u3c0.001). Conclusions: Physician estimates of probability of any brain injury in children were collectively accurate for children with low and moderate degrees of predicted risk. Risk was underestimated in infants

    Scalp Hematoma Characteristics Associated with Intracranial Injury in Pediatric Minor Head Injury

    Get PDF
    Objectives Minor head trauma accounts for a significant proportion of pediatric emergency department (ED) visits. In children younger than 24 months, scalp hematomas are thought to be associated with the presence of intracranial injury (ICI). We investigated which scalp hematoma characteristics were associated with increased odds of ICI in children less than 17 years who presented to the ED following minor head injury and whether an underlying linear skull fracture may explain this relationship. Methods This was a secondary analysis of 3,866 patients enrolled in the Canadian Assessment of Tomography of Childhood Head Injury (CATCH) study. Information about scalp hematoma presence (yes/no), location (frontal, temporal/parietal, occipital), and size (small and localized, large and boggy) was collected by emergency physicians using a structured data collection form. ICI was defined as the presence of an acute brain lesion on computed tomography. Logistic regression analyses were adjusted for age, sex, dangerous injury mechanism, irritability on examination, suspected open or depressed skull fracture, and clinical signs of basal skull fracture. Results ICI was present in 159 (4.1%) patients. The presence of a scalp hematoma (n = 1,189) in any location was associated with significantly greater odds of ICI (odds ratio [OR] = 4.4, 95% confidence interval [CI] = 3.06 to 6.02), particularly for those located in temporal/parietal (OR = 6.0, 95% CI = 3.9 to 9.3) and occipital regions (OR = 5.6, 95% CI = 3.5 to 8.9). Both small and localized and large and boggy hematomas were significantly associated with ICI, although larger hematomas conferred larger odds (OR = 9.9, 95% CI = 6.3 to 15.5). Although the presence of a scalp hematoma was associated with greater odds of ICI in all age groups, odds were greatest in children aged 0 to 6 months (OR = 13.5, 95% CI = 1.5 to 119.3). Linear skull fractures were present in 156 (4.0%) patients. Of the 111 patients with scalp hematoma and ICI, 57 (51%) patients had a linear skull fracture and 54 (49%) did not. The association between scalp hematoma and ICI attenuated but remained significant after excluding patients with linear skull fracture (OR = 3.3, 95% CI = 2.1 to 5.1). Conclusions Large and boggy and nonfrontal scalp hematomas had the strongest association with the presence of ICI in this large pediatric cohort. Although children 0 to 6 months of age were at highest odds, the presence of a scalp hematoma also independently increased the odds of ICI in older children and adolescents. The presence of a linear skull fracture only partially explained this relation, indicating that ruling out a skull fracture beneath a hematoma does not obviate the risk of intracranial pathology

    CATCH: A clinical decision rule for the use of computed tomography in children with minor head injury

    Get PDF
    Background: There is controversy about which children with minor head injury need to undergo computed tomography (CT). We aimed to develop a highly sensitive clinical decision rule for the use of CT in children with minor head injury. Methods: For this multicentre cohort study, we enrolled consecutive children with blunt head trauma presenting with a score of 13-15 on the Glasgow Coma Scale and loss of consciousness, amnesia, disorientation, persistent vomiting or irritability. For each child, staff in the emergency department completed a standardized assessment form before any CT. The main outcomes were need for neurologic intervention and presence of brain injury as determined by CT. We developed a decision rule by using recursive partitioning to combine variables that were both reliable and strongly associated with the outcome measures and thus to find the best combinations of predictor variables that were highly sensitive for detecting the outcome measures with maximal specificity. Results: Among the 3866 patients enrolled (mean age 9.2 years), 95 (2.5%) had a score of 13 on the Glasgow Coma Scale, 282 (7.3%) had a score of 14, and 3489 (90.2%) had a score of 15. CT revealed that 159 (4.1%) had a brain injury, and 24 (0.6%) underwent neurologic intervention. We derived a decision rule for CT of the head consisting of four high-risk factors (failure to reach score of 15 on the Glasgow coma scale within two hours, suspicion of open skull fracture, worsening headache and irritability) and three additional medium-risk factors (large, boggy hematoma of the scalp; signs of basal skull fracture; dangerous mechanism of injury). The high-risk factors were 100.0% sensitive (95% CI 86.2%-100.0%) for predicting the need for neurologic intervention and would require that 30.2% of patients undergo CT. The medium-risk factors resulted in 98.1% sensitivity (95% CI 94.6%-99.4%) for the prediction of brain injury by CT and would require that 52.0% of patients undergo CT. Interpretation: The decision rule developed in this study identifies children at two levels of risk. Once the decision rule has been prospectively validated, it has the potential to standardize and improve the use of CT for children with minor head injury. © 2010 Canadian Medical Association
    corecore