13 research outputs found

    Task-generic and task-specific connectivity modulations in the ADHD brain:an integrated analysis across multiple tasks

    Get PDF
    Contains fulltext : 231786.pdf (publisher's version ) (Open Access)Attention-deficit/hyperactivity disorder (ADHD) is associated with altered functioning in multiple cognitive domains and neural networks. This paper offers an overarching biological perspective across these. We applied a novel strategy that extracts functional connectivity modulations in the brain across one (P(single)), two (P(mix)) or three (P(all)) cognitive tasks and compared the pattern of modulations between participants with ADHD (n-89), unaffected siblings (n = 93) and controls (n = 84; total N = 266; age range = 8-27 years). Participants with ADHD had significantly fewer P(all) connections (modulated regardless of task), but significantly more task-specific (P(single)) connectivity modulations than the other groups. The amplitude of these P(single) modulations was significantly higher in ADHD. Unaffected siblings showed a similar degree of P(all) connectivity modulation as controls but a similar degree of P(single) connectivity modulation as ADHD probands. P(all) connections were strongly reproducible at the individual level in controls, but showed marked heterogeneity in both participants with ADHD and unaffected siblings. The pattern of reduced task-generic and increased task-specific connectivity modulations in ADHD may be interpreted as reflecting a less efficient functional brain architecture due to a reduction in the ability to generalise processing pathways across multiple cognitive domains. The higher amplitude of unique task-specific connectivity modulations in ADHD may index a more "effortful" coping strategy. Unaffected siblings displayed a task connectivity profile in between that of controls and ADHD probands, supporting an endophenotype view. Our approach provides a new perspective on the core neural underpinnings of ADHD

    Patterns of connectome variability in autism across five functional activation tasks: findings from the LEAP project

    Full text link
    Background: Autism spectrum disorder (autism) is a complex neurodevelopmental condition with pronounced behavioral, cognitive, and neural heterogeneities across individuals. Here, our goal was to characterize heterogeneity in autism by identifying patterns of neural diversity as reflected in BOLD fMRI in the way individuals with autism engage with a varied array of cognitive tasks. Methods: All analyses were based on the EU-AIMS/AIMS-2-TRIALS multisite Longitudinal European Autism Project (LEAP) with participants with autism (n = 282) and typically developing (TD) controls (n = 221) between 6 and 30 years of age. We employed a novel task potency approach which combines the unique aspects of both resting state fMRI and task-fMRI to quantify task-induced variations in the functional connectome. Normative modelling was used to map atypicality of features on an individual basis with respect to their distribution in neurotypical control participants. We applied robust out-of-sample canonical correlation analysis (CCA) to relate connectome data to behavioral data. Results: Deviation from the normative ranges of global functional connectivity was greater for individuals with autism compared to TD in each fMRI task paradigm (all tasks p < 0.001). The similarity across individuals of the deviation pattern was significantly increased in autistic relative to TD individuals (p < 0.002). The CCA identified significant and robust brain-behavior covariation between functional connectivity atypicality and autism-related behavioral features. Conclusions: Individuals with autism engage with tasks in a globally atypical way, but the particular spatial pattern of this atypicality is nevertheless similar across tasks. Atypicalities in the tasks originate mostly from prefrontal cortex and default mode network regions, but also speech and auditory networks. We show how sophisticated modeling methods such as task potency and normative modeling can be used toward unravelling complex heterogeneous conditions like autism

    Assessing age-dependent multi-task functional co-activation changes using measures of task-potency

    No full text
    It is being hypothesised that the developing adolescent brain is increasingly enlisting long-range connectivity, allowing improved communication between spatially distant brain regions. The developmental trajectories of such maturational changes remain elusive. Here, we aim to study how the brain engages in multiple tasks (working memory, reward processing, and inhibition) at the network-level and evaluate how effects of age across these tasks are related to each other. We characterise how the brain departs from its functional baseline architecture towards task-induced functional connectivity modulations using a novel measure called task potency, allowing direct comparison between tasks by defining sensitivity to one or multiple tasks. By applying this method in a sample of healthy participants (N = 218) aged 8–30 years, we demonstrate maturational changes in task-dependent functional co-activation over and above baseline connectivity maturation. Our results provide evidence for task-specific maturational windows with different cognitive systems probed by different tasks displaying specific age-range dependencies of strongest developmental change. Our results highlight the use of task potency for modelling developmental trajectories and the impact of differential maturation across tasks. This enables better characterisation of cognitive processes disrupted in neurodevelopmental disorders and may explain the increased level of heterogeneity observed in adolescent population studies. Keyword: Functional connectivity, Task fMRI, Resting stat

    Task-generic and task-specific connectivity modulations in the ADHD brain: an integrated analysis across multiple tasks

    No full text
    Attention-deficit/hyperactivity disorder (ADHD) is associated with altered functioning in multiple cognitive domains and neural networks. This paper offers an overarching biological perspective across these. We applied a novel strategy that extracts functional connectivity modulations in the brain across one (Psingle), two (Pmix) or three (Pall) cognitive tasks and compared the pattern of modulations between participants with ADHD (n-89), unaffected siblings (n = 93) and controls (n = 84; total N = 266; age range = 8–27 years). Participants with ADHD had significantly fewer Pall connections (modulated regardless of task), but significantly more task-specific (Psingle) connectivity modulations than the other groups. The amplitude of these Psingle modulations was significantly higher in ADHD. Unaffected siblings showed a similar degree of Pall connectivity modulation as controls but a similar degree of Psingle connectivity modulation as ADHD probands. Pall connections were strongly reproducible at the individual level in controls, but showed marked heterogeneity in both participants with ADHD and unaffected siblings. The pattern of reduced task-generic and increased task-specific connectivity modulations in ADHD may be interpreted as reflecting a less efficient functional brain architecture due to a reduction in the ability to generalise processing pathways across multiple cognitive domains. The higher amplitude of unique task-specific connectivity modulations in ADHD may index a more “effortful” coping strategy. Unaffected siblings displayed a task connectivity profile in between that of controls and ADHD probands, supporting an endophenotype view. Our approach provides a new perspective on the core neural underpinnings of ADHD

    Patterns of connectome variability in autism across five functional activation tasks: findings from the LEAP project.

    No full text
    BACKGROUND: Autism spectrum disorder (autism) is a complex neurodevelopmental condition with pronounced behavioral, cognitive, and neural heterogeneities across individuals. Here, our goal was to characterize heterogeneity in autism by identifying patterns of neural diversity as reflected in BOLD fMRI in the way individuals with autism engage with a varied array of cognitive tasks. METHODS: All analyses were based on the EU-AIMS/AIMS-2-TRIALS multisite Longitudinal European Autism Project (LEAP) with participants with autism (n = 282) and typically developing (TD) controls (n = 221) between 6 and 30 years of age. We employed a novel task potency approach which combines the unique aspects of both resting state fMRI and task-fMRI to quantify task-induced variations in the functional connectome. Normative modelling was used to map atypicality of features on an individual basis with respect to their distribution in neurotypical control participants. We applied robust out-of-sample canonical correlation analysis (CCA) to relate connectome data to behavioral data. RESULTS: Deviation from the normative ranges of global functional connectivity was greater for individuals with autism compared to TD in each fMRI task paradigm (all tasks p < 0.001). The similarity across individuals of the deviation pattern was significantly increased in autistic relative to TD individuals (p < 0.002). The CCA identified significant and robust brain-behavior covariation between functional connectivity atypicality and autism-related behavioral features. CONCLUSIONS: Individuals with autism engage with tasks in a globally atypical way, but the particular spatial pattern of this atypicality is nevertheless similar across tasks. Atypicalities in the tasks originate mostly from prefrontal cortex and default mode network regions, but also speech and auditory networks. We show how sophisticated modeling methods such as task potency and normative modeling can be used toward unravelling complex heterogeneous conditions like autism

    The link between callous-unemotional traits and neural mechanisms of reward processing:An fMRI study

    No full text
    Callous-unemotional (CU) traits, i.e., unconcernedness and lack of prosocial feelings, may manifest in Conduct Disorder (CD), but also in Oppositional Defiant Disorder (ODD) and Attention Deficit Hyperactivity Disorder (ADHD). These disorders have been associated with aberrant reward processing, while the influence of CU traits is unclear. Using functional Magnetic Resonance Imaging (fMRI), we examined whether CU traits affect the neural circuit for reward. A Monetary Incentive Delay (MID) task was administered to 328 adolescents and young adults with varying levels of CU traits: 40 participants with ODD/CD plus ADHD, 101 participants with ADHD only, 84 siblings of probands with ADHD and 103 typically developing (TD) individuals. During reward anticipation, CU traits related negatively to medial prefrontal cortex (mPFC) activity, independent of ADHD symptoms and ODD/CD diagnosis. Our results indicate that CU traits are a valuable dimension for assessing the neural basis of reward processing. (C) 2016 Elsevier Ireland Ltd. All rights reserve

    Patterns of connectome variability in autism across five functional activation tasks: findings from the LEAP project

    Get PDF
    Abstract Background Autism spectrum disorder (autism) is a complex neurodevelopmental condition with pronounced behavioral, cognitive, and neural heterogeneities across individuals. Here, our goal was to characterize heterogeneity in autism by identifying patterns of neural diversity as reflected in BOLD fMRI in the way individuals with autism engage with a varied array of cognitive tasks. Methods All analyses were based on the EU-AIMS/AIMS-2-TRIALS multisite Longitudinal European Autism Project (LEAP) with participants with autism (n = 282) and typically developing (TD) controls (n = 221) between 6 and 30 years of age. We employed a novel task potency approach which combines the unique aspects of both resting state fMRI and task-fMRI to quantify task-induced variations in the functional connectome. Normative modelling was used to map atypicality of features on an individual basis with respect to their distribution in neurotypical control participants. We applied robust out-of-sample canonical correlation analysis (CCA) to relate connectome data to behavioral data. Results Deviation from the normative ranges of global functional connectivity was greater for individuals with autism compared to TD in each fMRI task paradigm (all tasks p < 0.001). The similarity across individuals of the deviation pattern was significantly increased in autistic relative to TD individuals (p < 0.002). The CCA identified significant and robust brain-behavior covariation between functional connectivity atypicality and autism-related behavioral features. Conclusions Individuals with autism engage with tasks in a globally atypical way, but the particular spatial pattern of this atypicality is nevertheless similar across tasks. Atypicalities in the tasks originate mostly from prefrontal cortex and default mode network regions, but also speech and auditory networks. We show how sophisticated modeling methods such as task potency and normative modeling can be used toward unravelling complex heterogeneous conditions like autism

    White Matter Microstructure in Attention-Deficit/Hyperactivity Disorder: A Systematic Tractography Study in 654 Individuals

    Get PDF
    Background: Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder characterized by age-inappropriate levels of inattention and/or hyperactivity-impulsivity. ADHD has been related to differences in white matter (WM) microstructure. However, much remains unclear regarding the nature of these WM differences and which clinical aspects of ADHD they reflect. We systematically investigated whether fractional anisotropy (FA) is associated with current and/or lifetime categorical diagnosis, impairment in daily life, and continuous ADHD symptom measures. Methods: Diffusion-weighted imaging data were obtained from 654 participants (322 unaffected, 258 affected, 74 subthreshold; 7–29 years of age). We applied automated global probabilistic tractography on 18 major WM pathways. Linear mixed-effects regression models were used to examine associations of clinical measures with overall brain and tract-specific FA. Results: There were significant interactions of tract with all ADHD variables on FA. There were no significant associations of FA with current or lifetime diagnosis, nor with impairment. Lower FA in the right cingulum angular bundle was associated with higher hyperactivity-impulsivity symptom severity (pfamilywise error = .045). There were no significant effects for other tracts. Conclusions: This is the first time global probabilistic tractography has been applied to an ADHD dataset of this size. We found no evidence for altered FA in association with ADHD diagnosis. Our findings indicate that associations of FA with ADHD are not uniformly distributed across WM tracts. Continuous symptom measures of ADHD may be more sensitive to FA than diagnostic categories. The right cingulum angular bundle in particular may play a role in symptoms of hyperactivity and impulsivity
    corecore