7,584 research outputs found

    Perturbativity constraints on U(1)B−LU(1)_{B-L} and left-right models and implications for heavy gauge boson searches

    Full text link
    We derive perturbativity constraints on beyond standard model scenarios with extra gauge groups, such as SU(2)SU(2) or U(1)U(1), whose generators contribute to the electric charge, and show that there are both upper and lower limits on the additional gauge couplings, from the requirement that the couplings remain perturbative up to the grand unification theory (GUT) scale. This leads to stringent constraints on the masses of the corresponding gauge bosons and their collider phenomenology. We specifically focus on the models based on SU(2)L×U(1)I3R×U(1)B−LSU(2)_L\times U(1)_{I_{3R}} \times U(1)_{B-L} and the left-right symmetric models based on SU(2)L×SU(2)R×U(1)B−LSU(2)_L\times SU(2)_R\times U(1)_{B-L}, and discuss the implications of the perturbativity constraints for new gauge boson searches at current and future colliders. In particular, we find that the stringent flavor constraints in the scalar sector of left-right model set a lower bound on the right-handed scale vR≳10v_R \gtrsim 10 TeV, if all the gauge and quartic couplings are to remain perturbative up to the GUT scale. This precludes the prospects of finding the ZRZ_R boson in the left-right model at the LHC, even in the high-luminosity phase, and leaves only a narrow window for the WRW_R boson. A much broader allowed parameter space, with the right-handed scale vRv_R up to ≃87\simeq 87 TeV, could be probed at the future 100 TeV collider.Comment: 30 pages, 9 figures, 4 tables, minor changes, version to be published in JHE

    QQˉQ\bar Q (Q∈{b,c}Q\in \{b, c\}) spectroscopy using Cornell potential

    Full text link
    The mass spectra and decay properties of heavy quarkonia are computed in nonrelativistic quark-antiquark Cornell potential model. We have employed the numerical solution of Schr\"odinger equation to obtain their mass spectra using only four parameters namely quark mass (mcm_c, mbm_b) and confinement strength (AccˉA_{c\bar c}, AbbˉA_{b\bar b}). The spin hyperfine, spin-orbit and tensor components of the one gluon exchange interaction are computed perturbatively to determine the mass spectra of excited SS, PP, DD and FF states. Digamma, digluon and dilepton decays of these mesons are computed using the model parameters and numerical wave functions. The predicted spectroscopy and decay properties for quarkonia are found to be consistent with available experimental observations and results from other theoretical models. We also compute mass spectra and life time of the BcB_c meson without additional parameters. The computed electromagnetic transition widths of heavy quarkonia and BcB_c mesons are in tune with available experimental data and other theoretical approaches

    Predictions from non trivial Quark-Lepton complementarity

    Full text link
    The complementarity between the quark and lepton mixing matrices is shown to provide robust predictions. We obtain these predictions by first showing that the matrix V_M, product of the quark (CKM) and lepton (PMNS) mixing matrices, may have a zero (1,3) entry which is favored by experimental data. We obtain that any theoretical model with a vanishing (1,3) entry of V_M that is in agreement with quark data, solar, and atmospheric mixing angle leads to θ13PMNS=(9−2+1)∘\theta_{13}^{PMNS}=(9{^{+1}_{-2}})^\circ. This value is consistent with the present 90% CL experimental upper limit. We also investigate the prediction on the lepton phases. We show that the actual evidence, under the only assumption that the correlation matrix V_M product of CKM and PMNS has a zero in the entry (1,3), gives us a prediction for the three CP-violating invariants J, S_1, and S_2. A better determination of the lepton mixing angles will give stronger prediction for the CP-violating invariants in the lepton sector. These will be tested in the next generation experiments. Finally we compute the effect of non diagonal neutrino mass in "l_i -> l_j gamma" in SUSY theories with non trivial Quark-Lepton complementarity and a flavor symmetry. The Quark-Lepton complementarity and the flavor symmetry strongly constrain the theory and we obtain a clear prediction for the contribution to "mu -> e gamma" and the "tau" decays "tau -> e gamma" and "tau -> mu gamma". If the Dirac neutrino Yukawa couplings are degenerate but the low energy neutrino masses are not degenerate, then the lepton decays are related among them by the V_M entries. On the other hand, if the Dirac neutrino Yukawa couplings are hierarchical or the low energy neutrino masses are degenerate, then the prediction for the lepton decays comes from the CKM hierarchy.Comment: 15 pages, 5 figures, ws-ijmpa class included, Proceedings of the CTP Symposium on Sypersymmetry at LH

    Human-leopard conflict in Mandi district, Himachal Pradesh, India

    Get PDF
    Kumar, D., Chauhan, N.P.S

    Two Gallium data sets, spin flavour precession and KamLAND

    Full text link
    We reexamine the possibility of a time modulation of the low energy solar neutrino flux which is suggested by the average decrease of the Ga data in line with our previous arguments. We perform two separate fits to the solar neutrino data, one corresponding to 'high' and the other to 'low' Ga data, associated with low and high solar activity respectively. We therefore consider an alternative to the conventional solar+KamLAND fitting, which allows one to explore the much wider range of the θ12\theta_{12} angle permitted by the KamLAND fitting alone. We find a solution with parameters Δm212=8.2×10−5eV2,tan2θ=0.31\Delta m^2_{21}=8.2\times 10^{-5} eV^2, tan^{2}\theta=0.31 in which the 'high' and the 'low' Ga rates lie far apart and are close to their central values and is of comparable quality to the global best fit, where these rates lie much closer to each other. This is an indication that the best fit in which all solar and KamLAND data are used is not a good measure of the separation of the two Ga data sets, as the information from the low energy neutrino modulation is dissimulated in the wealth of data. Furthermore for the parameter set proposed one obtains an equally good fit to the KamLAND energy spectrum and an even better fit than the 'conventional' LMA one for the reactor antineutrino survival probability as measured by KamLAND.Comment: V2: 15 pages, 3 eps figures, fit improved, final version to appear in Journal of Physics

    Dynamic Characteristics of Aerosol Optical Properties over Dibrugarh City in the North-Eastern Indian Region during 2018–2021

    Get PDF
    Aerosols play an important role in the earth\u27s environment across the globe through their involvement in various earth system cycles. The change in the aerosol properties may cause short and long-term impacts, the knowledge of such changes is useful in the estimation of the pollution sources of any region. We have carried out the analysis of the aerosols\u27 optical and radiative properties using AERONET station data from 2018 to 2021 in Dibrugarh City. The higher Aerosol Optical Depth (AOD) values during winter and pre-monsoon months indicate high anthropogenic activities, and biomass burning in Dibrugarh. The impact of various sources and daily meteorological parameters help in understanding the diurnal variations of the AOD, Ångström Exponent (AE), and column water (CW). Fine aerosol fractions dominate the aerosol volume, but sometimes the long-range transport of dust affects aerosol properties during pre-monsoon months (MAM). MODIS-derived AOD and AERONET AOD values show a good correlation, with R2 = 0.68. The highest volume of the aerosols reaches up to 0.11 µm3 µm–2 during pre-monsoon months, whereas it lies below 0.05 µm3 µm–2 in other seasons. SSA values indicate the presence of scattering aerosols but in 2020, a sudden decline in the SSA values shows a strong rise in the absorbing aerosols. Throughout the study period (2018–2021), the positive radiative forcing indicates a rise in atmospheric heating
    • …
    corecore