78 research outputs found

    Longitudinal In Vivo Imaging of Retinal Ganglion Cells and Retinal Thickness Changes Following Optic Nerve Injury in Mice

    Get PDF
    Retinal ganglion cells (RGCs) die in sight-threatening eye diseases. Imaging RGCs in humans is not currently possible and proof of principle in experimental models is fundamental for future development. Our objective was to quantify RGC density and retinal thickness following optic nerve transection in transgenic mice expressing cyan fluorescent protein (CFP) under control of the Thy1 promoter, expressed by RGCs and other neurons.A modified confocal scanning laser ophthalmoscopy (CSLO)/spectral-domain optical coherence tomography (SD-OCT) camera was used to image and quantify CFP+ cells in mice from the B6.Cg-Tg(Thy1-CFP)23Jrs/J line. SD-OCT circle (1 B-scan), raster (37 B-scans) and radial (24 B-scans) scans of the retina were also obtained. CSLO was performed at baseline (n = 11) and 3 (n = 11), 5 (n = 4), 7 (n = 10), 10 (n = 6), 14 (n = 7) and 21 (n = 5) days post-transection, while SD-OCT was performed at baseline and 7, 14 and 35 days (n = 9) post-transection. Longitudinal change in CFP+ cell density and retinal thickness were computed. Compared to baseline, the mean (SD) percentage CFP+ cells remaining at 3, 5, 7, 10, 14 and 21 days post-transection was 86 (9)%, 63 (11)%, 45 (11)%, 31 (9)%, 20 (9)% and 8 (4)%, respectively. Compared to baseline, the mean (SD) retinal thickness at 7 days post-transection was 97 (3)%, 98 (2)% and 97 (4)% for the circle, raster and radial scans, respectively. The corresponding figures at 14 and 35 days post-transection were 96 (3)%, 97 (2)% and 95 (3)%; and 93 (3)%, 94 (3)% and 92 (3)%.Longitudinal imaging showed an exponential decline in CFP+ cell density and a small (≤8%) reduction in SD-OCT measured retinal thickness post-transection. SD-OCT is a promising tool for detecting structural changes in experimental optic neuropathy. These results represent an important step towards translation for clinical use

    In vivo imaging of adeno-associated viral vector labelled retinal ganglion cells

    No full text
    Abstract A defining characteristic of optic neuropathies, such as glaucoma, is progressive loss of retinal ganglion cells (RGCs). Current clinical tests only provide weak surrogates of RGC loss, but the possibility of optically visualizing RGCs and quantifying their rate of loss could represent a radical advance in the management of optic neuropathies. In this study we injected two different adeno-associated viral (AAV) vector serotypes in the vitreous to enable green fluorescent protein (GFP) labelling of RGCs in wild-type mice for in vivo and non-invasive imaging. GFP-labelled cells were detected by confocal scanning laser ophthalmoscopy 1-week post-injection and plateaued in density at 4 weeks. Immunohistochemical analysis 5-weeks post-injection revealed labelling specificity to RGCs to be significantly higher with the AAV2-DCX-GFP vector compared to the AAV2-CAG-GFP vector. There were no adverse functional or structural effects of the labelling method as determined with electroretinography and optical coherence tomography, respectively. The RGC-specific positive and negative scotopic threshold responses had similar amplitudes between control and experimental eyes, while inner retinal thickness was also unchanged after injection. As a positive control experiment, optic nerve transection resulted in a progressive loss of labelled RGCs. AAV vectors provide strong and long-lasting GFP labelling of RGCs without detectable adverse effects

    Immunohistochemical assessment of the glial mitogen-activated protein kinase activation in glaucoma. Invest Ophthalmol Vis Sci.

    No full text
    PURPOSE. To determine whether retinal glial cells exhibit an activated phenotype in glaucomatous human eyes and whether the mitogen-activated protein kinases (MAPKs) are associated with glial activation in glaucoma. METHODS. Activated phenotypes of retinal macroglia (astrocytes and Müller cells) and microglia were identified by morphologic assessment and immunostaining for the cell markers glial fibrillary acidic protein (GFAP) and HLA-DR, respectively, in 30 eyes obtained from glaucomatous donor eyes in comparison with normal control eyes from 20 age-matched donors. Cellular localization of the activated forms of MAPKs, including extracellular signal-regulated kinases (ERK), c-Jun amino(N)-terminal kinase (JNK), and p38, were studied in the retina of these eyes by immunoperoxidase staining and double immunofluorescence labeling with phosphorylation site-specific antibodies. RESULTS. Retinal astrocytes and Müller cells exhibited a hypertrophic morphology and increased immunostaining for GFAP in the glaucomatous retina. Although an increase was detectable in the number and size of cells positive for HLA-DR immunostaining in the glaucomatous retina compared with the control retina, microglial activation was not as prominent or widespread as the macroglial activation detected in the same eyes. The intensity of immunostaining and the number of immunostained cells for the activated MAPKs were greater in retina sections from glaucomatous eyes than in control eyes, being most prominent for phospho-ERK. Double immunofluorescence labeling demonstrated that the increased retinal immunostaining for phospho-ERK was predominantly, but not exclusively, localized to glial cells, whereas, the immunostaining for phospho-JNK or phospho-p38 was mainly associated with nonglial cells. CONCLUSIONS. These findings provide evidence that retinal glial cells undergo activation in the glaucomatous human retina. A prominent and persistent activation of ERK in activated glial cells suggests that this signaling pathway is probably associated with the induction and/or maintenance of the activated glial phenotype in glaucoma. Because MAPKs are involved in determination of ultimate cell fate, their differential activity in neuronal and activated glial cells in the glaucomatous retina may be associated, in part, with the differential susceptibility of these cell types to glaucomatous injury. (Invest Ophthalmol Vis Sci. 2003;44:3025-3033
    • …
    corecore