54 research outputs found

    The orchestrated functions of innate leukocytes and t cell subsets contribute to humoral immunity, virus control, and recovery from secondary poxvirus challenge

    Get PDF
    A pivotal role for antigen-specific recall responses to secondary virus infection is well established, but the contribution of innate immune cells to this process is unknown. Recovery of mice from a primary orthopoxvirus (ectromelia virus [ECTV]) infection requires the function of natural killer (NK) cells, granulocytes, plasmacytoid dendritic cells (pDC), T cells, and B cells. However, during a secondary challenge, resolution of infection is thought to be dependent on antibody but not T cell function. We investigated the contribution of NK cells, granulocytes, and pDC to virus control during a secondary virus challenge in mice that had been primed with an avirulent, mutant strain of ECTV. Mice depleted of NK cells, granulocytes, or pDC effectively controlled virus, as did mice depleted of both CD4 and CD8 T cell subsets. However, mice concurrently depleted of all three innate cell subsets had elevated virus load, but this was significantly exacerbated in mice also depleted of CD4 and/or CD8 T cells. Increased viral replication in mice lacking innate cells plus CD4 T cells was associated with a significant reduction in neutralizing antibody. Importantly, in addition to T-dependent neutralizing antibody responses, the function of CD8 T cells was also clearly important for virus control. The data indicate that in the absence of innate cell subsets, a critical role for both CD4 and CD8 T cells becomes apparent and, conversely, in the absence of T cell subsets, innate immune cells help contain infectio

    Evidence for Persistence of Ectromelia Virus in Inbred Mice, Recrudescence Following Immunosuppression and Transmission to Naive Mice

    Get PDF
    Orthopoxviruses (OPV), including variola, vaccinia, monkeypox, cowpox and ectromelia viruses cause acute infections in their hosts. With the exception of variola virus (VARV), the etiological agent of smallpox, other OPV have been reported to persist in a variety of animal species following natural or experimental infection. Despite the implications and significance for the ecology and epidemiology of diseases these viruses cause, those reports have never been thoroughly investigated. We used the mouse pathogen ectromelia virus (ECTV), the agent of mousepox and a close relative of VARV to investigate virus persistence in inbred mice. We provide evidence that ECTV causes a persistent infection in some susceptible strains of mice in which low levels of virus genomes were detected in various tissues late in infection. The bone marrow (BM) and blood appeared to be key sites of persistence. Contemporaneous with virus persistence, antiviral CD8 T cell responses were demonstrable over the entire 25-week study period, with a change in the immunodominance hierarchy evident during the first 3 weeks. Some virus-encoded host response modifiers were found to modulate virus persistence whereas host genes encoded by the NKC and MHC class I reduced the potential for persistence. When susceptible strains of mice that had apparently recovered from infection were subjected to sustained immunosuppression with cyclophosphamide (CTX), animals succumbed to mousepox with high titers of infectious virus in various organs. CTX treated index mice transmitted virus to, and caused disease in, co-housed naïve mice. The most surprising but significant finding was that immunosuppression of disease-resistant C57BL/6 mice several weeks after recovery from primary infection generated high titers of virus in multiple tissues. Resistant mice showed no evidence of a persistent infection. This is the strongest evidence that ECTV can persist in inbred mice, regardless of their resistance status

    Poxvirus-Encoded Gamma Interferon Binding Protein Dampens the Host Immune Response to Infection

    Get PDF
    Ectromelia virus (ECTV), a natural mouse pathogen and the causative agent of mousepox, is closely related to variola virus (VARV), which causes smallpox in humans. Mousepox is an excellent surrogate small-animal model for smallpox. Both ECTV and VARV encode a multitude of host response modifiers that target components of the immune system and that are thought to contribute to the high mortality rates associated with infection. Like VARV, ECTV encodes a protein homologous to the ectodomain of the host gamma interferon (IFN-γ) receptor 1. We generated an IFN-γ binding protein (IFN-γbp) deletion mutant of ECTV to study the role of viral IFN-γbp (vIFN-γbp) in host-virus interaction and also to elucidate the contribution of this molecule to the outcome of infection. Our data show that the absence of vIFN-γbp does not affect virus replication per se but does have a profound effect on virus replication and pathogenesis in mice. BALB/c mice, which are normally susceptible to infection with ECTV, were able to control replication of the mutant virus and survive infection. Absence of vIFN-γbp from ECTV allowed the generation of an elective host immune response that was otherwise diminished by this viral protein. Mice infected with a vIFN-γbp deletion mutant virus, designated ECTV-IFN-γbpΔ, produced increased levels of IFN-γ and generated robust cell-mediated and antibody responses. Using several strains of mice that exhibit differential degrees of resistance to mousepox, we show that recovery or death from ECTV infection is determined by a balance between the host's ability to produce IFN-γ and the virus' ability to dampen its effects

    A Natural Genetic Variant of Granzyme B Confers Lethality to a Common Viral Infection

    Get PDF
    Many immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While extensive polymorphism has been reported for the granzyme B (GzmB) gene, its relevance to pathogen immunity is unexplored. Here, we describe the biochemical and cytotoxic functions of a common allele of GzmB (GzmBW) common in wild mouse. While retaining ‘Asp-ase ’ activity, GzmBW has substrate preferences that differ considerably from GzmBP, which is common to all inbred strains. In vitro, GzmBW preferentially cleaves recombinant Bid, whereas GzmBP activates pro-caspases directly. Recombinant GzmBW and GzmBP induced equivalent apoptosis of uninfected targets cells when delivered with perforin in vitro. Nonetheless, mice homozygous for GzmBW were unable to control murine cytomegalovirus (MCMV) infection, and succumbed as a result of excessive liver damage. Although similar numbers of anti-viral CD8 T cells were generated in both mouse strains, GzmBW-expressing CD8 T cells isolated from infected mice were unable to kill MCMV

    Protective immunity against secondary poxvirus infection is dependent on antibody but not on CD4 or CD8 T-cell function

    No full text
    Renewed interest in smallpox and the need for safer vaccines have highlighted our lack of understanding of the requirements for protective immunity. Since smallpox has been eradicated, surrogate animal models of closely related orthopoxviruses, such as ectromelia virus, have been used to establish critical roles for CD8 T cells in the control of primary infection. To study the requirements for protection against secondary infection, we have used a prime-challenge regime, in which avirulent ectromelia virus was used to prime mice that were then challenged with virulent ectromelia virus. In contrast to primary infection, T cells are not required for recovery from secondary infection, since gene knockout mice deficient in CD8 T-cell function and wild-type mice acutely depleted of CD4, CD8, or both subsets were fully protected. Protection correlated with effective virus control and generation of neutralizing antibody. Notably, primed mice that lacked B cells, major histocompatibility complex class II, or CD40 succumbed to secondary infection. Thus, antibody is essential, but CD4 or CD8 T cells are not required for recovery from secondary poxvirus infection

    Correlates of protective immunity in poxvirus infection: where does antibody stand?

    No full text
    Even though smallpox has been eradicated, the threat of accidental or intentional release has highlighted the fact there is little consensus about correlates of protective immunity or immunity against re-infection with the causative poxvirus, variola virus (VARV). As the existing vaccine for smallpox has unacceptable rates of side effects and complications, new vaccines are urgently needed. Surrogate animal models of VARV infection in humans, including vaccinia virus (VACV) and ectromelia virus (ECTV) infection in mice, monkeypox virus (MPXV) infection in macaques have been used as tools to dissect the immune response to poxviruses. Mousepox, caused by ECTV, a natural mouse pathogen, is arguably the best surrogate small-animal model, as it shares many aspects of virus biology, pathology and clinical features with smallpox in humans. The requirements for recovery from a primary ECTV infection have been well characterized and include type I and II interferons, natural killer cells, CD4T cells, CD8T cell effector function and antibody. From a vaccine standpoint, it is imperative that the requirements for recovery from secondary infection are also identified. We have investigated host immune parameters in response to a secondary ECTV infection, and have identified that interferon and CD8T cell effector functions are not essential; however, T- and B-cell interaction and antibody are absolutely critical for recovery from a secondary challenge. The central role of antibody has been also been identified in the secondary response to other poxviruses. These findings have important clinical implications and would greatly assist the design of therapeutic interventions and new vaccines for smallpox

    Antiviral protection following immunization correlates with humoral but not cell-mediated immunity

    No full text
    Smallpox was a deadly disease when it was rife yet despite its eradication more than 30 years ago, the possibility of accidental or intentional release has driven research in search of better definitions of correlates of protective immunity. Mousepox, a disease caused by ectromelia virus (ECTV), is arguably one of the best surrogate small animal models for smallpox. Correlates of protection in mousepox are well defined during primary infection, whereas those in a secondary infection, which have definite relevance to vaccination strategies, are less well understood. We previously established that neutralizing antibody (Ab), which is generated far more rapidly during a secondary infection compared with a primary infection, has a key role during a secondary virus challenge. In this study, we show that the route of immunization or the use of homologous or heterologous virus vaccines for immunization does not influence the ability of mice to control high-dose virulent ECTV challenge or to mount a substantial secondary neutralizing Ab response. In contrast, the recall cytotoxic T lymphocyte (CTL) responses generated under these regimes of immunization were varied and did not correlate with virus control. Furthermore, unlike the recall Ab response that was generated rapidly, the kinetics of the secondary antiviral CTL response was no different to a primary infection and peaked only at day 8 post-challenge. This finding further underscores the importance of Ab in conferring protection during secondary poxvirus infection. This information could potentially prove useful in the design of safer and more efficacious vaccines against poxviruses or other diseases using poxvirus vectors

    Obligatory Requirement for Antibody in Recovery from a Primary Poxvirus Infection

    No full text
    To understand the correlates of protective immunity against primary variola virus infection in humans, we have used the well-characterized mousepox model. This is an excellent surrogate small-animal model for smallpox in which the disease is caused by infection with the closely related orthopoxvirus, ectromelia virus. Similarities between the two infections include virus replication and transmission, aspects of pathology, and development of pock lesions. Previous studies using ectromelia virus have established critical roles for cytokines and effector functions of CD8 T cells in the control of acute stages of poxvirus infection. Here, we have used mice deficient in B cells to demonstrate that B-cell function is also obligatory for complete virus clearance and recovery of the host. In the absence of B cells, virus persists and the host succumbs to infection, despite the generation of CD8 T-cell responses. Intriguingly, transfer of naive B cells or ectromelia virus-immune serum to B-cell-deficient mice with established infection allowed these animals to clear virus and fully recover. In contrast, transfer of ectromelia virus-immune CD8 T cells was ineffective. Our data show that mice deficient in CD8 T-cell function die early in infection, whereas those deficient in B cells or antibody production die much later, indicating that B-cell function becomes critical after the effector phase of the CD8 T-cell response to infection subsides. Strikingly, our results show that antibody prevents virus from seeding the skin and forming pock lesions, which are important for virus transmission between hosts
    • …
    corecore