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Abstract

Many immune response genes are highly polymorphic, consistent with the selective pressure imposed by pathogens over
evolutionary time, and the need to balance infection control with the risk of auto-immunity. Epidemiological and genomic
studies have identified many genetic variants that confer susceptibility or resistance to pathogenic micro-organisms. While
extensive polymorphism has been reported for the granzyme B (GzmB) gene, its relevance to pathogen immunity is
unexplored. Here, we describe the biochemical and cytotoxic functions of a common allele of GzmB (GzmBW) common in
wild mouse. While retaining ‘Asp-ase’ activity, GzmBW has substrate preferences that differ considerably from GzmBP, which
is common to all inbred strains. In vitro, GzmBW preferentially cleaves recombinant Bid, whereas GzmBP activates pro-
caspases directly. Recombinant GzmBW and GzmBP induced equivalent apoptosis of uninfected targets cells when delivered
with perforin in vitro. Nonetheless, mice homozygous for GzmBW were unable to control murine cytomegalovirus (MCMV)
infection, and succumbed as a result of excessive liver damage. Although similar numbers of anti-viral CD8 T cells were
generated in both mouse strains, GzmBW-expressing CD8 T cells isolated from infected mice were unable to kill MCMV-
infected targets in vitro. Our results suggest that known virally-encoded inhibitors of the intrinsic (mitochondrial) apoptotic
pathway account for the increased susceptibility of GzmBW mice to MCMV. We conclude that different natural variants of
GzmB have a profound impact on the immune response to a common and authentic viral pathogen.
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Introduction

Cytotoxic lymphocytes, such as natural killer (NK) cells and

CD8 T cells, are essential for the elimination of tumour cells or

cells infected with intracellular pathogens. One mechanism

cytotoxic lymphocytes utilize to initiate the destruction of target

cells is the exocytosis of granules containing perforin (Pfp) and a

family of serine proteases known as granzymes (Gzms) [1]. Pfp

facilitates the entry of Gzms into the cytoplasm of target cells,

where the Gzms cleave specific proteins triggering death of the

target. Multiple Gzms have been identified in both humans and

the mouse, with GzmA and GzmB being the most abundant and

best characterized in both species. While non-cytotoxic functions

of Gzms have been described, inducing target cell death appears to

be a major function of GzmA and GzmB, and the increased

sensitivity of mice lacking these proteins to infection with

ectromelia virus (ECTV) and murine cytomegalovirus (MCMV)

has been attributed to the role of the Gzms in the killing of infected

cells [2–4]. Unlike GzmB, which is universally agreed to induce

apoptosis [5], the mechanism employed by GzmA to induce cell

death remains controversial [6–8]; however, it is agreed that this

mechanism does not require activated caspases.

Human and mouse GzmB share extensive sequence homology

and thus were predicted to kill cells by the same mechanism.

However, amino acids that influence substrate binding differ between

human and mouse GzmB, with the two proteins now recognized to

have different substrate preferences [9–11]. A significant difference

between the two proteins is that human, but not mouse GzmB,

efficiently cleaves the BH3-only protein Bid [10,12,13]. Once

cleaved, tBid is capable of inducing permeabilization of the
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mitochondrial outer membrane (MOMP) resulting in the release of

pro-apoptotic mediators that ultimately activate a caspase cascade.

The finding that cells lacking Bid or overexpressing Bcl-2 survive

treatment with human GzmB is consistent with the theory that

human GzmB indirectly activates caspases [12,14,15]. By contrast,

mouse GzmB appears to mediate its effects by directly processing

pro-caspases to their active form, and does not require MOMP in

order to induce apoptosis [9,10]. Thus, while both human and

mouse GzmB efficiently induce the death of target cells, they

achieve this by different mechanisms.

Many pathogens inhibit apoptotic pathways as a means of

survival. The differences in mouse and human GzmB substrate

specificity may therefore have arisen in response to pathogens

targeting different apoptotic pathways in humans and mice.

Alternatively, the need to directly target proteins produced by

species-specific pathogens could have driven the divergence in

GzmB substrate specificities. For example, GzmB inhibits the

reactivation of HSV-1 by cleaving the virally encoded ICP4

protein [16]. Similarly, GzmH and GzmB cooperate to suppresses

the spread of human adenovirus V by degrading viral proteins

essential for replication [17]. Further evidence that selective

pressure from pathogens has contributed to changes in GzmB has

come from the finding that GzmB polymorphisms exist. In

humans, a limited degree of GzmB polymorphism has been

described [18], however, the significance of this finding is unclear

as there is no difference in the proteolytic activities of the two

common alleles and both have equivalent biochemical and

cytotoxic functions, at least in vitro [19]. In the mouse, 13

common inbred laboratory mouse strains that were tested show no

GzmB sequence variation, a finding that probably reflects the

limited gene pool from which laboratory strains were derived [20].

By contrast, significant variation in the GzmB sequence was noted

in wild mice or wild-derived inbred mouse strains, including in

some of the residues that line the substrate cleft. Interestingly, the

single allele found in all the inbred mouse strains was relatively

uncommon in the wild, found in ,20% of isolates [20].

Responses to pathogen challenges have been investigated almost

exclusively using inbred mouse strains including knock-out mice

rendered genetically deficient in GzmB, but the important

question as to whether polymorphisms in GzmB influence the

outcome of infections with common pathogens has not been

addressed. Here, we have characterized a GzmB allele present in

wild mice and found that although its substrate specificity differs

from that of GzmB encoded by C57BL/6 (B6) mice, its in vitro
cytotoxic potential is identical to that of the B6 allele. Nevertheless,

substitution of the GzmB allele encoded by B6 mice with the

GzmB allele from wild mice led to the inability to effectively

control MCMV infection. These data provide novel insights about

the relevance of GzmB polymorphisms and demonstrate that

polymorphisms in GzmB significantly influence the response to

infection with a common, natural viral pathogen.

Results

GzmB alleles have different substrate preferences
We had previously shown that the mouse GzmB gene is highly

polymorphic amongst outbred mouse populations and that some

of the polymorphic residues are predicted to impinge on the

substrate binding pocket and to potentially influence fine protease

specificity [20]. To investigate this further, we selected a wild (w)

mouse GzmB allele that is markedly divergent from the allele

common to B6 mice as well as the 13 inbred mouse strains we

previously typed. For clarity we will refer to the prototype B6

inbred allele as GzmBP, and the outbred wild allele as GzmBW.

GzmBW encodes 13 differences in amino acid sequence from

GzmBP or 94.7% amino acid identity over the entire 247 amino

acid sequence (Fig. 1A).

We expressed and purified recombinant GzmBW and GzmBP in

Pichia pastoris yeast cells, as previously described [21]. Both forms

were indistinguishable in their ability to cleave the generic GzmB

substrate AAD-SBzl (Fig. 1B), indicating that GzmBW possesses

classic Asp-ase activity. Both forms also bound Serpinb9, the

intracellular inhibitor of GzmB [22–24](Fig. 1C), suggesting that

GzmBP and GzmBW are subject to similar regulation in vivo.

Inhibition of any serine proteases by its cognate serpin can only

occur if the protease can correctly recognize and cleave the

relatively unstructured reactive site loop of the serpin. This further

confirmed the proteolytic activity of GzmBW, and its cleavage after

aspartate [22].

We have previously shown that GzmBP differs from human

GzmB in that it cleaves peptide substrates based on Bid (e.g. Abz-

IEPDSESQK-dnp) very poorly, and prefers substrates with an

aromatic P2 residue and glycine at P29 ([10] and Table 1).

Strikingly, GzmBW cleaves peptide substrates based on Bid over

100 times more efficiently than GzmBP, and three-fold more

efficiently than human GzmB (Table 1). Like GzmBP, GzmBW

prefers substrates with glycine at P29, but cleaves substrates with

an aromatic P2 residue four- to five-fold less efficiently. To confirm

these differences in relation to broader substrate specificity, both

forms were used in a substrate phage display experiment on a

library with Asp fixed at the P1 position [10]. The results indicated

very similar requirements at the P4 position (I/L), as well as a

requirement for glycine at P29 (Figure S1). However, the strong

preference of GzmBP for aromatic residues at P2 was not

conserved in GzmBW, consistent with the peptide substrate results

(Table 1).

We next examined whether the differences in turnover of Bid

(IEPD) substrates is also reflected in a different capacity to cleave

intact Bid or effector pro-caspases 3 and 7. We found that GzmBW

is 50–100 fold more efficient than GzmBP at cleaving recombinant

Bid, but far less efficient at activating pro-caspase-3 or pro-

caspapse-7 (Fig. 2). To determine whether these changes in

substrate preference translate into a variable capacity to kill target

cells, we exposed P815 (mouse mastocytoma), EL-4 (mouse

thymoma), HeLa (human cervical cancer) and Jurkat (human T

Author Summary

Granzymes (Gzm) are serine proteases expressed by
cytotoxic T cells and natural killer cells, and are important
for the destruction of virally infected cells. To date, the
function of these molecules has been assessed exclusively
in common laboratory mouse strains that express identical
granzyme proteins. In wild mouse populations, variants of
granzyme B have been identified, but how these function,
especially in the context of infections, is unknown. We
have generated a novel mouse strain expressing a
granzyme B variant found in wild mice (GzmBW), and
exposed these mice to viral infections. The substrates
cleaved by GzmBW were found to differ significantly from
those cleaved by the GzmBP protein, which is normally
expressed by laboratory mice. Alterations in substrate
specificity resulted in GzmBW mice being significantly
more susceptible to infection with murine cytomegalovi-
rus, a common mouse pathogen. Our findings demon-
strate that polymorphisms in granzyme B can profoundly
affect the outcome of infections with some viral patho-
gens.
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lymphoma) cells to graded doses of each GzmB form and very low

(‘sublytic’) quantities of purified recombinant Pfp (Fig. 3). For

each cell line, we found no significant difference in susceptibility to

apoptosis. Overall, we concluded that there is no significant

difference in the intrinsic pro-apoptotic activity of GzmB

expressed by the inbred laboratory mice and outbred wild mice.

GzmBW from T and NK cells retains full functionality
To examine the role of the GzmBW allele in more physiological

settings, we generated a congenic mouse strain carrying the w

allele. This was achieved by backcrossing the w/w mouse for .20

generations with B6, at each generation selecting for the w allele.

This strain was also crossed with B6.OT1 mice to create the

Figure 1. GzmBW and GzmBP have distinct substrate preferences. (A) Predicted amino acid sequences of the p (common inbred) and w
(wild) alleles of mouse GzmB. A comparison with the sequences of human (RAH allele) and rat GzmB is shown, commencing with the 18-residue
leader peptide and the activation peptide GE which is trimmed in the cytotoxic granules by cathepsin C or H. The mature protein commences with
the tetrapeptide IIGG. Single amino acid code is used, with dots denoting identical amino acid at the same position. (B) Progress curves of
recombinant granzymes at indicated concentrations cleaving the peptide thioester substrate Boc-Ala-Ala-Asp (AAD)-SBzl. (C) Interaction of
recombinant granzymes with Serpinb9. One mg of granzyme was incubated with 10 mg serpin and complex formation assessed by 10% SDS-PAGE
with Coomassie Blue staining. Note that all the granzyme shifts into complex (arrowed), indicating fully active preparations.
doi:10.1371/journal.ppat.1004526.g001
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GzmBW/W.OT1 strain, so that antigen restricted CTLs could be

studied in both strains (see below). An alternative and probably less

laborious approach to deriving the congenic line over so many

generations would have been to develop a ‘knock in’ of the W

allele on P strain. However, we and other groups have not been

successful in this approach, due to the large number of highly

homologous granzyme gene sequences closely linked in the GzmB
locus.

Using whole exome DNA sequencing we confirmed that the

GzmB locus on chromosome 14 including the GzmB gene, all 6

linked Gzm genes and the gene encoding Cathepsin G (expressed

in neutrophils, but not cytotoxic lymphocytes) were derived from

w. The genetic interval derived from w comprised approximately

18% of the chromosome 14 DNA. Overall, the genetic content of

the w/w mouse was .99.1% derived from B6. Having derived the

DNA sequence of the 0.9% of the genome that remained from the

w strain, we were able to assess whether the high degree of

polymorphism identified for GzmB was also the case for the other

granzymes (GzmC-G and N). This was not the case: whereas .

5.3% of the amino acids of GzmB differed between the two

Table 1. GzmBW has a substrate preference similar to human GzmB.

Substrate kcat(s21) KM (mM) kcat/KM (M21s21)

Human GzmB

Abz-IEPD SESQK-dnp (JNI-7) 1.31660.091 18.9662.45 69 397610 161

Abz-IEPD SGSQK-dnp (JNI-9) 5.10660.270 22.0662.67 231 449630 585

Abz-LEYD LGALK-dnp (JNI-13) 0.03560.002 122.9066.83 285620

Mouse GzmBP

Abz-IEPD SESQK-dnp (JNI-7) 0.04960.004 30.8862.48 1 5756172

Abz-IEPD SGSQK-dnp (JNI-9) 0.65160.182 59.6762.92 10 91563101

Abz-LEYD LGALK-dnp (JNI-13) 2.51060.160 23.4862.68 106 948618 094

Mouse GzmBW

Abz-IEPD SESQK-dnp (JNI-7) 6.1460.54 30.3265.60 202 364617 877

Abz-IEPD SGSQK-dnp (JNI-9) 24.4561.31 21.2262.35 1 152 328661 606

Abz-LEYD LGALK-dnp (JNI-13) 1.9760.07 83.8065.06 23 57361 649

doi:10.1371/journal.ppat.1004526.t001

Figure 2. GzmBW cleaves Bid more efficiently and procaspases
less efficiently than GzmBP. In vitro translated 35S-labeled mouse
procaspase 3, mouse procaspase 7, or mouse Bid were incubated with
the indicated amounts of granzymes at 37uC for 30 min. Products were
separated by 15% SDS-PAGE and visualized by fluorography.
doi:10.1371/journal.ppat.1004526.g002

Figure 3. GzmBW and GzmBP have equivalent cytotoxic
potential in vitro. (A) Mouse P815, (B) mouse EL-4, (C) human Jurkat
and (D) HeLa cells were labeled with 51Cr, and exposed to sub-lytic
concentrations of recombinant perforin in combination with either
mouse p (black bars) or w (white bars) recombinant GzmB. Specific 51Cr
release is shown as the mean of individual experiments (each
performed in triplicate) 6 SEM. The number of experiments performed
were: P815 (n = 5), EL-4 (n = 2), Jurkat (n = 3) and HeLa (n = 4).
doi:10.1371/journal.ppat.1004526.g003
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allotypes, the corresponding figure across the other 6 genes was ,

0.3% (a total of four polymorphic residues out of 1362 across the 6

coding regions; P,0.0001) (Table 2).

We wished to establish beyond doubt that our in vitro
enzymatic findings, which were derived with purified recombinant

proteases, would be replicated in bona fide antigen restricted

CTLs, which, along with NK cells, are the authentic physiological

context for granzyme expression. We therefore generated OVA257

specific activated T cells from the spleens of B6 and GzmBW/W

congenic OT1 mice and tested the resultant cell lysates on peptide

substrates. The generic Asp-ase substrate AAD-SBzl was cleaved

with similar efficiency by B6 and w/w T cell lysates (Fig. 4A). By

contrast, the tetrapeptide substrate IEPD was cleaved more

efficiently by w/w lysate (with .3 times the maximum velocity

of p/p, p,0.05), confirming differences in the fine specificity of the

two alloforms of GzmB observed with in vitro-generated proteins

(Fig. 4B). Structural predictions for the granzymes whose genes

are closely linked to GzmB, indicate that these proteases should

have chymotrypsin-like (‘chymase’) activity and cleave after

hydrophobic P1 residues [25] as has been clearly demonstrated

for the human orthologue GzmH [26]. As expected, the respective

CTL lysates from the w and p mice had indistinguishable chymase

activity (Figure 4C), further confirming that the minimal changes

in amino acid sequence among the chymase granzymes had no

impact on substrate preference. There was no turnover in AAD or

IEPD in T cells derived from GzmAB-null mice, while B6 mice

deficient in perforin (whose gene maps to Chr 10) showed similar

activity to wild type B6 mice (Fig. 4A and C). Western blot of cell

lysates also showed no quantitative difference in GzmB expression

across the various strains tested (Fig. 4D).

GzmBW/W mice show increased sensitivity to MCMV
infection

Our in vitro analyses determined that the substrate specificity of

GzmBW differs from that of the B6 allele. Since the Gzms have

been shown to play a critical role in viral infections, we next

examined whether the differences in substrate specificity observed

in vitro and ex vivo can lead to functional differences after

infection with bona fide mouse pathogens. MCMV, a natural

pathogen of mice, is partly controlled by activities mediated by

GzmB [4]. Thus, the effect of GzmBW on the ability of the host to

control MCMV infection was investigated. In B6 mice, NK cells

rapidly control MCMV infection via activation mediated by

engagement of the Ly49H activating NK cell receptor. However,

in the wild most ($80%) MCMV variants encode m157 proteins

that are unable to activate NK cells [27] and indeed, the frequency

of Ly49H-resistance is rare in outbred wild mice [28]. These

findings indicate that B6-like Ly49H-m157 interactions are not a

feature of host–MCMV interactions in the wild. Thus, to examine

the role of GzmBW/W in a setting that reflects the situation in wild

mouse populations, we utilized a virus lacking the m157 viral

protein (Dm157). In the absence of m157, MCMV replicates to

high titers in the visceral organs of B6 mice, and is eventually

controlled primarily by cytotoxic CD8 T cells. Unlike B6 mice

(GzmBP/P), infection of the GzmBW/W mice with Dm157 MCMV

resulted in rapid mortality (Fig. 5A). At day 7 post-infection, viral

loads in the spleens and lungs of GzmBW/W mice were not

significantly different from those observed in B6 mice (Fig. 5B).

By contrast, the livers of GzmBW/W mice contained approximately

10 fold more virus than livers of B6 mice (Fig. 5B). Histological

analysis of GzmBW/W livers harvested at day 6 post-infection

revealed significant areas of focal necrosis and diffuse cellular

infiltrates, while in B6 mice no significant damage was evident in

liver sections (Fig. 5C). The advanced liver damage observed in

GzmBW/W mice by histological analysis was also confirmed by

measuring circulating liver transaminase levels. Serum levels of the

liver enzymes alanine aminotransferase (ALT) and aspartate

aminotransferase (AST) in GzmBW/W mice were significantly

elevated at day 6 post-infection (Fig. 5D). These data indicate

that GzmBW/W mice have an impaired response to Dm157

MCMV infection that manifests as significantly higher viral loads

within the liver, and tissue damage to this organ, which markedly

increases mortality.

GzmB, along with GzmA, produced by cytotoxic CD8 T cells is

essential for host defense against the poxvirus ECTV [2,29].

ECTV is a large DNA virus that is the causative agent of

mousepox. GzmBW/W mice infected with 105 pfu of the Moscow

strain of ETCV succumbed to infection at rate equivalent to that

of B6 mice (Figure S2A), and viral load in the blood of GzmBW/

W mice at day 8 post-infection was not significantly different to

that of B6 mice (Figure S2B). Since mice that lack GzmB are

100-fold more susceptible to ECTV infection [2], these data

indicate that GzmBW can substitute for the B6 allele of GzmB in

the context of ECTV infection, and provide independent evidence

that the GzmBW allele is functional not only in vitro (Table 1),

but also in vivo.

The response of GzmBW/W mice to MCMV infection
mirrors that of GzmB-deficient mice

The outcome of infection with the Dm157 MCMV virus was

then compared in GzmBW/W mice and mice lacking GzmA,

GzmB or both GzmA and B. Viral loads were measured in target

organs (spleen, liver and lungs) at days 4 and 6 post-infection by

plaque assay. Experiments were terminated at day 6 post-infection

as GzmBW/W mice become highly sensitive to infection after this

time. Viral loads in mice deficient for GzmA were equivalent to

those of B6 mice in all organs tested, at both day 4 and 6 (Fig. 6),

suggesting that, at least during the acute phase of infection, GzmA

is not required for viral control. By contrast, viral loads in the livers

of mice deficient in GzmB, either alone, or in combination with

GzmA, were significantly higher than those observed in B6 mice at

day 6 post-infection (Fig. 6B). Thus, GzmB is essential for

effective control of MCMV Dm157 in the liver. Furthermore,

replication of the Dm157 virus in the livers of GzmBW/W mice was

Table 2. Non-synonymous polymorphisms in Gzm genes
linked to GzmB on Chr 141.

Gene Polymorphism3

GzmC L7I4

E175K (rs266005675)2

GzmF I4V (rs49622871)2,4

GzmN None

GzmG G51R

S144T (rs244881887)2

GzmD I4V4

W247R (rs16803648)2

GzmE None

1Genes are listed in their correct order on Chr 14, not alphabetically.
2Previously recorded in various SNP databases.
3Most of the predicted amino acid changes are highly conservative; unlike
GzmB, none are predicted to affect the substrate cleft.
4Map to the leader sequence, so do not affect the mature protein; a total of four
polymorphisms affecting mature protein are shown in bold.
doi:10.1371/journal.ppat.1004526.t002
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equivalent to that of GzmB2/2 and GzmA/B2/2 mice, indicating

that GzmBW/W cannot substitute for the B6 allele during the anti-

viral response to MCMV.

Deregulated cytokine production does not contribute to
liver damage in MCMV infected GzmBW/W mice

The effect of the Dm157 virus on GzmBW/W mice is

reminiscent of the effects of MCMV infection on pfp-deficient

mice. Mice lacking pfp exhibit increased mortality after MCMV

infection [30]. While MCMV replication in the liver of pfp2/2

mice is significantly higher than that observed in B6 mice,

uncontrolled viral replication is not the cause of mortality [4].

Rather, a fatal hemophagocytic lymphohistiocytsis (HLH)-like

syndrome develops in pfp2/2 mice due to the uncontrolled

production of TNFa by accumulating activated macrophages [4].

To determine if GzmBW/W mice exhibited any signs of an HLH-

like syndrome, we examined lymphocyte populations and cytokine

production after MCMV infection. Following infection with the

Dm157 MCMV mutant, the livers of GzmBW/W mice contained

significantly more leukocytes at day 6 post-infection (Fig. 7A).

Analysis of these leukocytes by FACS revealed that the number of

inflammatory monocytes (CD11b+ Ly6C+ Ly6G2) in the liver of

GzmBW/W mice were significantly increased (Fig. 7A). While a

similar trend was observed for granulocytes (CD11b+ Ly6G+), this

did not reach statistical significance (Fig. 7A). Given the increased

numbers of inflammatory monocytes in the livers of GzmBW/W

mice, we measured pro-inflammatory cytokine production to

determine if this may be contributing to the observed mortality.

The levels of TNFa and IFNc in the livers of GzmBW/W mice

were not significantly different from those observed in B6 mice

(Fig. 7B). These findings indicate that GzmBW/W mice do not

develop an HLH-like syndrome following MCMV infection.

In order to better characterize the effects of MCMV infection in

GzmBW/W mice, immunohistochemistry (IHC) staining of liver

sections was performed. IHC staining of liver sections with an

antibody specific for the IE1 protein of MCMV revealed a stark

difference between B6 and the GzmBW/W mice. In B6 mice

inflammatory foci were evident at day 6 post-infection, consisting

of small numbers of infected hepatocytes (brown stain), typically

surrounded by a large number of lymphocytes (Fig. 7C). In

GzmBW/W mice, the inflammatory foci were larger in size and

contained significantly more infected hepatocytes (Fig. 7C).

Furthermore, areas of necrosis and cell debris within the centre

of the foci were apparent (Fig. 7C). Together the data indicate

that the liver damage observed in GzmBW/W mice was the direct

result of uncontrolled viral replication, rather than the outcome of

immune-mediated pathology.

CD8 T cells from GzmBW/W mice are unable to kill virally
infected cells

The inability of GzmBW/W mice to control MCMV in the liver

suggests that these mice may not be generating an appropriate

anti-viral CTL response. Serpinb9 is a potent inhibitor of GzmB

that is expressed by CTL [24]. Expression of Serpinb9 is required

to prevent the premature apoptosis of CTL generated in response

to lymphocytic choriomenigitis virus (LCMV) or Listeria mono-

ctogenes infection [31]. We found that the GzmBW protein

effectively bound Serpinb9 in an in vitro assay (Fig. 1C), but this

Figure 4. Granule enzyme activity and GzmB expression in T cell lysates from GzmBW/W and GzmBP/P mice. (A) GzmB (ASPase) activity
was measured as the maximum rate of cleavage of the peptide thioester substrate Boc-Ala-Ala-Asp (AAD)-SBzl or (B) the activity detected through
cleavage of Ac-IEPD-pNA. (C) Chymotrypsin-like (chymase) activity (cleavage of Suc-Phe-Leu-Phe SBzl) was used as an independent measure of
granule enzyme activity. The data points show the mean 6 SEM of triplicate readings. The data is representative of 3 individual experiments.
Equivalent results were obtained with lysates generated from IL-2 activated NK cells. (D) Western blot analysis for GzmB expression in OT1 T cells
from outbred w/w mice, B6 and control GKO (B6.Pfp2/2 and B6.GzmAB2/2) mice. The blot was re-probed for actin expression.
doi:10.1371/journal.ppat.1004526.g004

A GzmB Variant Alters Susceptibility to Viral Pathogens

PLOS Pathogens | www.plospathogens.org 6 December 2014 | Volume 10 | Issue 12 | e1004526



finding does not preclude the possibility that Serpinb9 is unable to

efficiently inhibit GzmBW in CTL in vivo. We therefore infected

Serpinb92/2 mice with Dm157 MCMV and quantified viral

replication. Viral titers in the spleen, liver, and lungs of Serpinb92/

2 mice were not significantly different from those of B6 mice

(Figure S3). Thus, the effects observed in GzmBW/W mice are not

the result of an inability of Serpinb9 to inhibit GzmBW.

Next, we assessed the generation and effectiveness of anti-viral T

cell responses in GzmBW/W mice. The total numbers of CD8 and

CD4 T cells localizing to the livers of GzmBW/W mice after MCMV

infection were not significantly different from those observed in

MCMV-infected B6 mice (Fig. 8A). A peptide derived from the

M45 protein of MCMV is the immunodominant epitope recog-

nized by CD8 T cells in B6 mice [32]. The percentage of CD8 T

cells stained by an M45 tetramer in B6 mice following MCMV

infection was similar to that observed in GzmBW/W mice (Fig. 8B),

and there were no differences in the total number of M45-specific

CD8 T cells generated (Fig. 8C). The capacity of M45-specific T

cells to kill target cells was also assessed. Splenocytes isolated from

B6 mice at day 6 post-infection efficiently lysed M45 pulsed target

cells, while no significant lysis was apparent when splenocytes from

uninfected mice were used (Fig. 8D). The capacity of GzmBW/W

splenocytes to lyse M45 pulsed target cells was similar to that of B6

cells (Fig. 8D). Hence, GzmBW/W mice generate an effective CD8

T cell response following infection with Dm157 MCMV and these

T cells are able to efficiently kill model target cells. In addition to

peptide pulsed targets, we tested the capacity of GzmBW/W and

GzmBP/P CD8 T cells to kill MCMV-infected cells. CD8 T cells

were purified from the spleen of B6 mice or GzmBW/W mice 6 days

after infection, co-cultured with MCMV-infected IC-21 macro-

phages and macrophage viability assessed 18 h later. GzmBP/P

CD8 T efficiently lysed the MCMV-infected target cells in a dose

dependent manner, whereas GzmBW/W CD8 T cells were almost

completely ineffective (Fig. 8E). Collectively, the data suggested

that CD8 T cells expressing the w allele of GzmB are elicited and

activated in response to MCMV infection, but are unable to kill

MCMV-infected targets, accounting of the susceptibility of these

mice to the virus.

Figure 5. GzmBW/W mice are sensitive to infection with Dm157 MCMV. (A) B6 mice (black square) or GzmBW/W mice (white square) were
infected with 26104 pfu of MCMV Dm157 and survival monitored over the indicated time course (n = 5 for each group). ***P,0.0001. (B) The
indicated mouse strains were infected with 26104 pfu of MCMV Dm157, the indicated organs were removed at day 7 post-infection, and viral load
quantified by plaque assay. Data are pooled from 2 independent experiments, mean 6 SEM are plotted, where n$8. *P,0.05. (C) Livers from
uninfected or MCMV-infected mice were isolated at day 6 post-infection, fixed and tissue sections stained with haematoxylin and eosin. The results
are representative of two independent experiments. (D) Liver enzymes in the serum of B6 mice (black bar) or GzmBW/W mice (white bar) were
measured at day 6 post-infection. Data are pooled from two independent experiments where n$5. *P,0.05.
doi:10.1371/journal.ppat.1004526.g005
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Discussion

Murine GzmB is highly polymorphic in wild mice, but the

physiological relevance of this finding has been unclear. Here, we

have characterized the biochemical and physiological function of

an allelic variant of GzmB, GzmBW, found in wild mice. We have

found that GzmB polymorphism affects the substrates cleaved by

the protease in vitro. GzmBW efficiently cleaved peptide substrates

based on the Bid sequence, and Bid itself, and as such, has an

activity that is distinct from the GzmBP allele expressed by inbred

mouse strains. Despite having different substrate preferences,

GzmBP and GzmBW induced apoptosis of uninfected target cells

with similar efficiency in vitro, and GzmBW/W mice were as

efficient as wild type B6 mice in controlling ECTV infection.

These data clearly show that the GzmBW isoform is bioactive in
vitro and, more importantly, in vivo, at least as far as the

requirements for its critical role in inducing the death of ‘‘generic’’

targets cells and in controlling infection with ECTV.

A striking finding of the study is that B6 mice expressing

GzmBW are extremely sensitive to MCMV infection demonstrat-

ing that polymorphism in GzmB can have a significant impact on

the capacity of the host to control specific pathogens. We found

that GzmB was essential for control of Dm157 MCMV (the most

common MCMV variant found in the wild), and that the GzmBW

allele was unable to substitute for GzmBP in this setting. These

results argue for a defect in cytotoxicity, however, several non-

cytotoxic roles have been ascribed to various Gzms. For example,

GzmA and GzmM have a role in the production/release of pro-

inflammatory cytokines [33–35]. We found that production of the

pro-inflammatory cytokines IFNc and TNFa by GzmBW/W mice

following MCMV infection was equivalent to that of B6 mice.

Furthermore, GzmBW/W mice generated CD8 T cell effectors at

the expected frequency with localisation of these cells to the liver

equivalent to that observed in B6 mice. Thus, the inability of

GzmBW/W mice to control MCMV infection was not the result of

defects in the production of pro-inflammatory cytokines, nor was it

due to defective CD8 T cell numbers.

The initiation of apoptosis by activating caspases is the best-

characterized function of GzmB. Human GzmB initiates apoptosis

by activating caspases via two distinct pathways [36]. A

mitochondrial-dependent pathway is activated when human

GzmB cleaves Bid resulting in MOMP and the release of pro-

apoptotic mediators [13,37]. Mitochondrial-independent path-

ways operate via direct pro-caspase activation when sufficiently

high concentrations of GzmB are delivered to the target cell

cytosol [36]. Given the substrate specificity of the w allele,

apoptosis induced by this form of GzmB is likely to mirror that of

human GzmB. In vitro, GzmBW was as effective as GzmBP at

inducing apoptosis in uninfected target cells, and anti-viral specific

CD8 T cells isolated from GzmBW/W mice killed peptide pulsed

target cells efficiently, indicating that there is no intrinsic defect in

the direct cytotoxic capacity of GzmBW. However, CD8 T cells

isolated from GzmBW/W mice were unable to kill MCMV-infected

target cells in vitro. MCMV encodes potent inhibitors of both Bax

and Bak that together prevent MOMP in response to multiple

stimuli [38–41]. Collectively, the data strongly suggest that as

GzmBW preferentially cleaves Bid, rather than directly activating

caspases, it is susceptible to inhibition by MCMV-encoded

proteins that block the intrinsic cell death pathway.

Our previous work has studied some of the key residues that

dictate the species-specific substrate preferences of human and

mouse GzmB. We found that two residues whose side-chains

impinge on the substrate cleft, 180Arg and 222Lys are important in

this regard, as substitution of the corresponding human or rat

residue conferred a greater capacity to cleave Bid [10]. Residue

222 was invariant in all of the mouse GzmB alleles we previously

sequenced and is thus common to both the mouse w and p alleles.

However at position 180, the w allele encodes His, rather than Arg

(present in the p allele), or Tyr which is found in human GzmB.

His is also present at the same position in M. casteneus and M.

spretus, mouse subspecies commonly found in certain parts of

Asia. Given that 222Lys is invariant, it is extremely likely that the

altered substrate preferences that result in the w allele having a far

greater ability to cleave mouse Bid than to activate pro-caspases

directly must rely on 180His. We found that in contrast to GzmBP,

we found that GzmBW is unable to effectively activate some pro-

caspases directly. Thus, apoptosis induced by GzmBW is reliant on

activating the intrinsic pathway. Overall, a combination of

changes in GzmB’s fine substrate specificity, together with the

expression of MCMV-encoded inhibitors of MOMP accounts for

the failure of GzmBW expressing CD8 T cells to kill virally infected

cells, resulting in uncontrolled viral replication.

In summary, we have demonstrated that a GzmB polymor-

phism commonly found in the wild has a profound influence on

the ability of mice to control a natural pathogen. Importantly, the

devastating effects elicited in hosts carrying the GzmBW allele by

what is a common viral infection suggest that this allele has been

maintained in the population because it confers a survival

advantage in a setting yet to be defined. Furthermore, the function

of GzmB in the response to pathogens and tumours has been

investigated almost exclusively using inbred mouse strains all of

which express the same allele of GzmB. The results of this study

suggest that the use of mouse strains expressing alternative alleles

of GzmB will be important for gaining a full understating of the

Figure 6. Increased viral load in mice lacking GzmB. The
indicated mouse strains were infected with 26104 pfu of MCMV
Dm157. At days 4 and 6 post-infection viral loads in the (A) spleen, (B)
liver and (C) lungs were quantified by plaque assay. Data are pooled
from 3 independent experiments, mean 6 SEM are plotted, where n$6.
*P,0.05.**P,0.005.
doi:10.1371/journal.ppat.1004526.g006
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role played by GzmB during an immune response. These findings

also raise the possibility that alleles of GzmB identified in humans

could impact on the control of some human pathogens.

Materials and Methods

Ethics statement
This study was performed in accordance with the recommen-

dations in the Australian code of practice for the care and use of

animals for scientific purposes and the Australian National Health

and Medical Research Council Guidelines and Policies on Animal

Ethics. Experiments were approved by the Animal Ethics and

Experimentation Committee of the University of Western

Australia (Protocol # RA3/100/1094), the Animal Ethics and

Experimentation Committee of the Peter MacCallum Cancer

Centre (Protocol #E381) and the Animal Ethics and Experimen-

tation Committee of the Australian National University (Protocol

# A2012/041).

Protein production
Recombinant granzymes were produced as artificial zymogens

in Pichia pastoris, activated using enterokinase following purifica-

tion, and assessed for the ability to cleave the synthetic peptide

thiobenzylester (Boc-Ala-Ala-Asp (AAD)-SBzl [10,21]. A GzmBw

cDNA with optimized mouse codon usage was synthesized in vitro
(GenScript). Specific activity of purified mouse granzymes was

assessed by SDS-stable binding to an enhanced form of Serpinb9

(Cys339Asp) produced as described [42]. Preparations were

routinely .95% active.

Production of granzyme substrates in vitro
35S-labeled mouse procaspase 3 or mouse Bid was produced

from cDNAs in the expression vector pSVTf via in vitro

transcription and translation [19].

Phage display
Recombinant granzymes were used to probe a P1 Asp-anchored

library, as described [43].

Generation of wild GzmB mouse lines
A wild mouse colony (B1–6) maintained at the Animal Resource

Centre (Canning Vale, WA), which expressed the outbred GzmB

allele (GzmBw/w) [20] was crossed with C57BL/6 mice. Mice

Figure 7. Liver damage in GzmBW/W mice is not the result of immune-mediated pathology. (A) B6 mice (black bar) or GzmBW/W mice
(white bar) were infected with Dm157 MCMV and total liver leukocytes, inflammatory monocytes, and granulocytes enumerated at the indicated
times. Data are pooled from 2 independent experiments, mean 6 SEM are plotted, where n$5. *P,0.05. **P,0.01. (B) Levels of TNF-a and IFN-c in
the liver at the indicated times post-infection were quantified by ELISA. (C) Livers from uninfected or MCMV-infected mice at day 6 post-infection
were stained with the Chroma 101 anti-IE1 antibody followed by detection with a DAB substrate. Sections were counterstained with haematoxylin.
The results are representative of two independent experiments.
doi:10.1371/journal.ppat.1004526.g007
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homozygous for GzmBw/w were backcrossed to C57BL/6 for 22

generations. These F22 mice were also crossed with B6.OT1

(ovalbumin-specific, H-2b -restricted T-cell receptor transgenic)

mice to generate a GzmBw/w.OT1 line.

Mice
Inbred C57BL/6J (B6) mice were obtained from the

Animal Resources Centre (Perth, Western Australia,

Australia), orWalter and Eliza Hall Institute (Melbourne).

Figure 8. GzmBW/W CD8 T cells are unable to lyse MCMV infected cells. (A) The numbers of CD8 and CD4 T cells localizing to the liver of B6
mice (black bar) or GzmBw/w mice (white bar) after infection with MCMV Dm157 are shown. (B) At the indicated times post-infection, splenocytes
were stained with anti-CD8, anti-TCRb, and M45 tetramers. Representative FACS plots showing the percentage of M45-specific CD8 T cells are shown,
and (C) the total numbers of M45-specific CD8 T cells are plotted. Data are pooled from 2 independent experiments, where n$5. (D) Splenocytes
were isolated from MCMV Dm157 infected B6 (black square) and GzmBw/w mice (white circle), or from uninfected B6 mice (white square) and GzmBw/

w mice (black circle). Splenocytes were cultured with 51Cr-labeled M45 pulsed EL4 cells for 4 h and specific lysis determined. n = 6 for each data point.
(E) CD8 T cells were purified from B6 mice (black square) and GzmBw/w mice (open circle) and co-cultured with MCMV infected IC-21 macrophages for
18 h at the indicated E:T ratios. n = 5 for each data point.
doi:10.1371/journal.ppat.1004526.g008
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B6.granzymeA2/2 (GzmA2/2), B6.granzymeB2/2 (GzmB2/2),

B6.granzymeAB2/2 (GzmAB2/2), B6.perforin2/2 (Pfp2/2)

B6.OT1, B6.Gzm.AB2/2.OT1, and B6.pfp.OT1 mice were bred

and maintained at the Peter MacCallum Cancer Centre,

Melbourne. B6 mice carrying the Serpinb9tm1.1/Pib allele (Ser-

pinb92/2 mice) were generated and maintained at Monash

University [44]. Mice were used at 6–10 weeks of age.

Generation of primary mouse CTL
OVA257 specific activated T cells were generated from the

spleens of the various OT1 mice (B6, B6.Pfp2/2, B6.GzmAB2/2,

B6.GzmBw/w) as previously described [45]. The cytotoxic activity

of the CTL was verified in 51Cr release assays using H-2b-peptide

pulsed target cells (EL-4), as previously described [46].

Granule enzyme activity assays
Whole cell lysates were prepared from CTL cultures and

normalized for protein content. Granule enzyme activity was

determined as previously described [47] using synthetic peptide

thiobenzylester (Boc-Ala-Ala-Asp (AAD)-SBzl and Suc-Phe-Leu-

Phe SBzl) and paranitroanilide (Acetyl-Ile-Glu-Pro-Asp-paranitroa-

nilide, Ac-IEPD-pNA) substrates (SM Biochemicals, CA, USA).

Western blot
Ten mg of whole cell lysate was separated on NuPAGE 4–12%

Bis Tris gels (Life Technologies, CA, USA), transferred and

probed for mouse GrB protein (rat anti-mouse GrB, clone 16G6,

eBioscience, CA, USA), as previously described [12]. Equal

protein loading was confirmed by re-probing the blot with an anti-

mouse b-actin antibody (Sigma-Aldrich, USA).

Viral infections
Murine cytomegalovirus. For pathogenesis studies, mice

were inoculated intraperitoneally (ip) with 26104 plaque-forming

units (pfu) of salivary gland propagated (SGV) MCMV-Dm157

mutant virus [48]. SGV stocks were diluted in phosphate-buffered

saline-0.05% fetal bovine serum. A dose of 56103 pfu was used for

phenotypic analysis of lymphocytes.

Ectromelia virus. Mice were inoculated with the Moscow

strain of ECTV subcutaneously (sc) with 105 pfu of virus in the

flank of the left hind limb (hock) of mice under avertin anesthesia.

All animals were monitored daily for clinical signs of disease,

weighed every 2–3 days and euthanized if they lost 25% of their

original body weight and recorded as dead the following day.

Viral quantification
MCMV viral titers in organs were determined by plaque assay

using M210B4 cells as previously described [49].

ETCV genome copies in blood were measured by quantitative

real time PCR (qRT-PCR) to amplify the target sequence of ECTV-

Mos-156 gene, as described elsewhere [50]. Oligonucleotide primers

used were, forward: CGCTACACCTTATCCTCAGACAC, and

reverse: GGAATTGGGCTCCTTATACCA. Viral DNA was

prepared using QiaAmp DNA Mini Kit (Qiagen Pty Ltd, Victoria,

Australia) as per manufacturer’s instructions. Serial dilutions of a

plasmid encoding ECTV-Mos-156 were used as the standard. The

qRT-PCR reaction was carried out in SYBR iQ Supermix (Bio-Rad

Laboratories), in a total volume of 20 ml using the iQ5 cycler (Bio-

Rad Laboratories Pty Ltd, New South Wales, Australia).

Flow cytometry
Single-cell suspensions were prepared by perfusing the liver via

the portal vein with phosphate buffered saline (PBS). The liver was

then digested with collagenase buffer (RPMI/2% FCS, 1% (w/v)

collagenase IV (GIBCO) for 20 min before being passing through

steel mesh. The resulting preparation was resuspended in in a

37.5% isotonic Percoll solution (Pharmacia) and centrifuged at

690 g for 12 min to separate lymphocytes from hepatocytes. Red

blood cells were osmotically lysed using NH4Cl and cells washed in

FACS buffer. Antibodies used Antibodies used for analysis (TCRb,

CD8, CD4, CD11b, CD11c, Ly6C, Ly6G) were purchased from

BD Biosciences and the M45 tetramer was obtained from

ImmunoID Tetramers, University of Melbourne, Australia. Dead

cells were excluded from analysis using propidium iodide.

Cytokine quantification
IFNc and TNFa levels in the liver were measured by standard

sandwich enzyme-linked immunosorbent assay (ELISA) with

antibodies from BD Biosciences. Detection was achieved with

poly-horseradish peroxidase (poly-HRP) conjugated to streptavi-

din (CBL, Amsterdam, Netherlands) and K-Blue (Elisa Systems,

Brisbane, Australia).

Histological analysis
Organs were removed from mice at the designated times and

fixed in 10% buffered formal saline. Organs were then embedded

in paraffin, tissue sections prepared and sections stained with

haematoxylin and counter stained with eosin. IE1 protein was

detected by staining slides with an anti-IE1 monoclonal antibody

(Clone Chroma 101), and detected with goat anti mouse HRPO

and metal enhanced DBA substrate (Thermo Fisher).

Cell death assays
Cell death induced by perforin (0.135–1.3 nM) and the recom-

binant mouse inbred and the outbred wild GzmB (12.5–25 nM) was

assessed by 51Cr release assays as previously described [51].

Cytotoxic activity of M45 specific T cells was assessed by

preparing a single-cell suspension from the spleens. Splenocytes were

diluted 2-fold on 96-well plates starting with 16106 cells/well and
51Cr-labeled EL4 cells pulsed with M45 peptide (16104 cells/well)

were added. Each assay was performed in triplicate. Chromium

release was measure after 4 h incubation. Data are presented as

percentage of specific lysis, calculated by the following formula:

percentage specific lysis = (experimental c.p.m.2spontaneous release

c.p.m.)/(total c.p.m.2spontaneous release c.p.m.)6100.

The capacity of activated CD8 T cells to kill MCMV infected

cells was assessed using IC-21 macrophages. B6 or GzmBW/W mice

were infected with Dm157 virus and spleens removed at day 6 post-

infection. CD8 T cells were purified from the spleen using a CD8a

positive selection kit (Stem Cell Technologies) according to the

manufacturers instructions. IC-21 macrophages were infected with

MCMV 12 h prior to co-culture with the purified CD8 T cells. Cell

viability was quantified after 16 h of co-culture by MTT assay.

Statistical analysis
In vitro assays were assessed using a one way ANOVA with

Tukey’s multiple comparison test. Statistical analysis of survival

curves were performed using the Log Rank test. Differences in

viral replication within organs were assessed using a two-tailed

Mann-Whitney test. Statistical tests were performed using the

statistical software package InStat (GraphPad Software, San Diego

California USA).

Supporting Information

Figure S1 Comparison of human GzmB, GzmBW and
GzmBP subsite specificity by anchored substrate phage
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display. Cleavage of substrates occurs between the anchored P1

Asp and P19 residues (arrow). Y-axis shows Ds values as a

percentage, normalised to the highest score (except for the fixed

residue for each data set). Numbers of phage sequenced: hGzmB

102; GzmBW 71; GzmBP 70. The sequencing results were

analyzed to determine the statistical distribution of each amino

acid at each position. In a binomial distribution of amino acids,

Ds yields the difference of the observed frequency from the

expected frequency in terms of standard deviations (for methods

see [10,43]).

(TIF)

Figure S2 ETCV infection in GzmBw/w mice. (A) B6 mice

(black square) or GzmBw/w mice (white square) were infected with

16105 pfu of ECTV and survival monitored. n$5 (B) Blood was

isolated from mice at day 8 post-infection, and ECTV quantified

by qRT-PCR. Mean 6 SEM are plotted, where n$5.

(EPS)

Figure S3 MCMV infection in Serpinb92/2 mice. B6

mice or Serpinb92/2 mice were infected with 26104 pfu of

MCMV Dm157. At day 6 post-infection, viral loads in the spleen,

liver, and lungs were quantified by plaque assay. Data are pooled

from 2 independent experiments, mean 6 SEM are plotted, where

n$6.

(EPS)
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