1,201 research outputs found
Do Maternal Vitamin D Levels Influence Vitamin D Levels in Preterm Neonates?
Objective To determine the prevalence of Vitamin D (VitD) deficiency/insufficiency in mothers of preterm neonates less than or equal to 32 weeks of gestation and determine if the current level of VitD supplementation used for preterm neonates is appropriate. Design Prospective study from 10th May 2015 to 1st November 2016. Setting Neonatal Intensive Care Unit at the Canberra Hospital. Patients Mothers and their preterm neonates born less than or equal to 32 weeks gestation. Interventions Maternal VitD levels were obtained within 3-4 days following delivery. Neonatal VitD levels were obtained in the first 3-4 days of life, at 3-4 weeks of age, and at 6-8 weeks of age. Demographic data and data on VitD intake from parenteral nutrition, enteral feeds, and vitamin supplementation agents were collected. Results 70 neonates were enrolled into the study. Median gestation was 29 (27-30) weeks and median birth weight 1197 (971.2-1512.5) grams. Median maternal VitD level was 54.5 (36-70.7) nmol/L, median neonatal Vit D level at birth was 57 (42-70) nmol/L. Median Vit D level at 3 weeks and 6 weeks were 63.5 nmol/L (53-80.2) nmol/L and 103 (71.5-144) nmol/L respectively. 22/55 (40%) mothers were VitD deficient/insufficient. 25/70 (36%) neonates were VitD deficient/insufficient at birth. Of those neonates who were VitD deficient/insufficient at birth 5/25(10%) were deficient/insufficient at 6 weeks. The median intake of VitD at 6 weeks was 826.5 (577.5-939.5) IU/day. Conclusions VitD deficiency/insufficiency in mothers of preterm neonates and in preterm neonates at birth is common. Routine screening of maternal VitD and their preterm neonates along with individualized supplementation regimens in mothers and preterm infants may optimize VitD status and reduce risk of ongoing VitD deficiency/insufficiency
Zoonotic Tuberculosis: A Concern and Strategies to Combat
Mycobacterium bovis is the main causal agent of bovine tuberculosis that causes zoonotic tuberculosis in humans. The most common routes of transmission of the agent to human are airborne transmission, consumption of unpasteurized milk, direct contact with infected animals or untreated animal products. Conventional diagnostic methods in combination with modern molecular and immunological techniques should be used for early and accurate diagnosis of the disease. Some of the challenges to tackle and eradicate zoonotic TB in developing countries are having many hosts, absence of early diagnosis, presence of other acute diseases, being economically unable to implement control strategies, and other social and cultural issues. Usually treatment is not recommended in animals but vaccination is carried out in some countries as a preventive measure. Due to the grave consequences of M. bovis infection on animal and human health, it is necessary to introduce accurate control measures to reduce the risk of disease in human and animal populations. Proper food hygiene practices, slaughter of the affected animals in developed countries, and segregation of the suspected animals in developing countries along with stronger intersectoral collaboration between the veterinary and medical professions are important for the control of the disease
Twin boundaries in d-wave superconductors
Twin boundaries in orthorhombic d-wave superconductors are investigated
numerically using the Bogoliubov-deGennes formalism within the context of an
extended Hubbard model. The twin boundaries are represented by tetragonal
regions of variable width, with a reduced chemical potential. For sufficiently
large twin boundary width and change in chemical potential, an induced s-wave
component may break time-reversal symmetry at a low temperature. This
temperature, and the magnitude of the complex component, are found to depend
strongly on electron density. The results are compared with recent tunneling
measurements.Comment: ReVTeX, 4 pages, 4 postscript figure
Functional characterization of enhancer activity during a long terminal repeat\u27s evolution
Many transposable elements (TEs) contain transcription factor binding sites and are implicated as potential regulatory elements. However, TEs are rarely functionally tested for regulatory activity, which in turn limits our understanding of how TE regulatory activity has evolved. We systematically tested the human LTR18A subfamily for regulatory activity using massively parallel reporter assay (MPRA) and found AP-1- and CEBP-related binding motifs as drivers of enhancer activity. Functional analysis of evolutionarily reconstructed ancestral sequences revealed that LTR18A elements have generally lost regulatory activity over time through sequence changes, with the largest effects occurring owing to mutations in the AP-1 and CEBP motifs. We observed that the two motifs are conserved at higher rates than expected based on neutral evolution. Finally, we identified LTR18A elements as potential enhancers in the human genome, primarily in epithelial cells. Together, our results provide a model for the origin, evolution, and co-option of TE-derived regulatory elements
Normative Functional Performance Values in High School Athletes: The Functional Pre-Participation Evaluation Project
Context: The fourth edition of the Preparticipation Physical Evaluation recommends functional testing for the musculoskeletal portion of the examination; however, normative data across sex and grade level are limited. Establishing normative data can provide clinicians reference points with which to compare their patients, potentially aiding in the development of future injury-risk assessments and injury-mitigation programs.
Objective: To establish normative functional performance and limb-symmetry data for high school-aged male and female athletes in the United States.
Design: Cross-sectional study.
Setting: Athletic training facilities and gymnasiums across the United States.
Patients or Other Participants: A total of 3951 male and female athletes who participated on high school-sponsored basketball, football, lacrosse, or soccer teams enrolled in this nationwide study.
Main Outcome Measure(s): Functional performance testing consisted of 3 evaluations. Ankle-joint range of motion, balance, and lower extremity muscular power and landing control were assessed via the weight-bearing ankle-dorsiflexion–lunge, single-legged anterior-reach, and anterior single-legged hop-for-distance (SLHOP) tests, respectively. We used 2-way analyses of variance and χ2 analyses to examine the effects of sex and grade level on ankle-dorsiflexion–lunge, single-legged anterior-reach, and SLHOP test performance and symmetry.
Results: The SLHOP performance differed between sexes (males = 187.8% ± 33.1% of limb length, females = 157.5% ± 27.8% of limb length; t = 30.3, P \u3c .001). A Cohen d value of 0.97 indicated a large effect of sex on SLHOP performance. We observed differences for SLHOP and ankle-dorsiflexion–lunge performance among grade levels, but these differences were not clinically meaningful.
Conclusions: We demonstrated differences in normative data for lower extremity functional performance during preparticipation physical evaluations across sex and grade levels. The results of this study will allow clinicians to compare sex- and grade-specific functional performances and implement approaches for preventing musculoskeletal injuries in high school-aged athletes
The Nonlinear Meissner Effect in Unconventional Superconductors
We examine the long-wavelength current response in anisotropic
superconductors and show how the field-dependence of the Meissner penetration
length can be used to detect the structure of the order parameter. Nodes in the
excitation gap lead to a nonlinear current-velocity constitutive equation at
low temperatures which is distinct for each symmetry class of the order
parameter. The effective Meissner penetration length is linear in and
exhibits a characteristic anisotropy for fields in the -plane that is
determined by the positions of the nodes in momentum space. The nonlinear
current-velocity relation also leads to an intrinsic magnetic torque for
in-plane fields that are not parallel to a nodal or antinodal direction. The
torque scales as for and has a characteristic angular
dependence. We analyze the effects of thermal excitations, impurity scattering
and geometry on the current response of a superconductor, and
discuss our results in light of recent measurements of the low-temperature
penetration length and in-plane magnetization of single-crystals of
and .Comment: 30 pages, RevTeX file with 16 postscript figures. Submitted to Phys.
Rev.
The Staphylococcus aureus CidA and LrgA Proteins Are Functional Holins Involved in the Transport of By-Products of Carbohydrate Metabolism
The Staphylococcus aureus cidABC and lrgAB operons encode members of a well-conserved family of proteins thought to be involved in programmed cell death (PCD). Based on the structural similarities that CidA and LrgA share with bacteriophage holins, we have hypothesized that these proteins function by forming pores within the cytoplasmic membrane. To test this, we utilized a lysis cassette system that demonstrated the abilities of the cidA and lrgA genes to support bacteriophage endolysin-induced cell lysis. Typical of holins, CidA- and LrgA-induced lysis was dependent on the coexpression of endolysin, consistent with the proposed holin-like functions of these proteins. In addition, the CidA and LrgA proteins were shown to localize to the surface of membrane vesicles and cause leakage of small molecules, providing direct evidence of their hole-forming potential. Consistent with recent reports demonstrating a role for the lrgAB homologues in other bacterial and plant species in the transport of by-products of carbohydrate metabolism, we also show that lrgAB is important for S. aureus to utilize pyruvate during microaerobic and anaerobic growth, by promoting the uptake of pyruvate under these conditions. Combined, these data reveal that the CidA and LrgA membrane proteins possess holin-like properties that play an important role in the transport of small by-products of carbohydrate metabolism. IMPORTANCE The Staphylococcus aureus cidABC and lrgAB operons represent the founding members of a large, highly conserved family of genes that span multiple kingdoms of life. Despite the fact that they have been shown to be involved in bacterial PCD, very little is known about the molecular/biochemical functions of the proteins they encode. The results presented in this study reveal that the cidA and lrgA genes encode proteins with bacteriophage holin-like functions, consistent with their roles in cell death. However, these studies also demonstrate that these operons are involved in the transport of small metabolic by-products of carbohydrate metabolism, suggesting an intriguing link between these two seemingly disparate processes
- …