4,589 research outputs found

    Analysis of Two-Body Decays of Charmed Baryons Using the Quark-Diagram Scheme

    Full text link
    We give a general formulation of the quark-diagram scheme for the nonleptonic weak decays of baryons. We apply it to all the decays of the antitriplet and sextet charmed baryons and express their decay amplitudes in terms of the quark-diagram amplitudes. We have also given parametrizations for the effects of final-state interactions. For SU(3) violation effects, we only parametrize those in the horizontal WW-loop quark diagrams whose contributions are solely due to SU(3)-violation effects. In the absence of all these effects, there are many relations among various decay modes. Some of the relations are valid even in the presence of final-state interactions when each decay amplitude in the relation contains only a single phase shift. All these relations provide useful frameworks to compare with future experiments and to find out the effects of final-state interactions and SU(3) symmetry violations.Comment: 28 pages, 20 Tables in landscape form, 4 figures. Main changes are: (i) some errors in the Tables and in the relations between the quark-diagram amplitudes of this paper and those of Ref.[10] are corrected, (ii) improvements are made in the presentation so that comparisons with previous works and what have been done to include SU(3) breaking and final-state interactions are more clearly stated; to appear in the Physical Review

    Glucocerebrosidase activity, cathepsin D and monomeric α-synuclein interactions in a stem cell derived neuronal model of a PD associated GBA1 mutation.

    Get PDF
    The presence of GBA1 gene mutations increases risk for Parkinson's disease (PD), but the pathogenic mechanisms of GBA1 associated PD remain unknown. Given that impaired α-synuclein turnover is a hallmark of PD pathogenesis and cathepsin D is a key enzyme involved in α-synuclein degradation in neuronal cells, we have examined the relationship of glucocerebrosidase (GCase), cathepsin D and monomeric α-synuclein in human neural crest stem cell derived dopaminergic neurons. We found that normal activity of GCase is necessary for cathepsin D to perform its function of monomeric α-synuclein removal from neurons. GBA1 mutations lead to a lower level of cathepsin D protein and activity, and higher level of monomeric α-synuclein in neurons. When GBA1 mutant neurons were treated with GCase replacement or chaperone therapy; cathepsin D protein levels and activity were restored, and monomeric α-synuclein decreased. When cathepsin D was inhibited, GCase replacement failed to reduce monomeric α-synuclein levels in GBA1 mutant neurons. These data indicate that GBA1 gene mutations increase monomeric α-synuclein levels via an effect on lysosomal cathepsin D in neurons

    Design of a magnetic-geared outer-rotor permanent-magnet brushless motor for electric vehicles

    Get PDF
    This paper proposes a novel in-wheel motor, which artfully integrates a magnetic gear into a permanent-magnet brushless (PMBL) DC motor so that they can share a common PM rotor, hence offering both high efficiency and high power density. Moreover, the low-speed requirement for direct driving and the high-speed requirement for compact motor design can be achieved simultaneously. A 2-kW 600/4400-rpm magnetic-geared outer-rotor PMBL DC motor is designed and analyzed, which is particularly suitable for battery-powered electric motorcycles. © 2007 IEEE.published_or_final_versio

    Branching ratio and CP asymmetry of Bsπ+πB_s \to \pi^+ \pi^- decays in the perturbative QCD approach

    Full text link
    In this paper, we calculate the decay rate and CP asymmetry of the Bsπ+πB_s \to \pi^+\pi^- decay in perturbative QCD approach with Sudakov resummation. Since none of the quarks in final states is the same as those of the initial BsB_s meson, this decay can occur only via annihilation diagrams in the standard model. Besides the current-current operators, the contributions from the QCD and electroweak penguin operators are also taken into account. We find that (a) the branching ratio is about 4×1074 \times 10^{-7}; (b) the penguin diagrams dominate the total contribution; and (c) the direct CP asymmetry is small in size: no more than 33% ; but the mixing-induced CP asymmetry can be as large as ten percent testable in the near future LHC-b experiments.Comment: 12 pages, 4 figures included, RevTe

    Implications of Recent Bˉ0D()0X0\bar{B}^0\to D^{(*)0}X^0 Measurements

    Full text link
    The recent measurements of the color-suppressed modes Bˉ0D()0π0\bar B^0\to D^{(*)0}\pi^0 imply non-vanishing relative final-state interaction (FSI) phases among various BˉDπ\bar B\to D\pi decay amplitudes. Depending on whether or not FSIs are implemented in the topological quark-diagram amplitudes, two solutions for the parameters a1a_1 and a2a_2 are extracted from data using various form-factor models. It is found that a2a_2 is not universal: a2(Dπ)=0.400.55|a_2(D\pi)|= 0.40-0.55 and a2(Dπ)=0.250.35|a_2(D^*\pi)|= 0.25-0.35 with a relative phase of order (5055)(50-55)^\circ between a1a_1 and a2a_2. If FSIs are not included in quark-diagram amplitudes from the outset, a2eff/a1effa_2^{eff}/a_1^{eff} and a2effa_2^{eff} will become smaller. The large value of a2(Dπ)|a_2(D\pi)| compared to a2eff(Dπ)|a_2^{eff}(D\pi)| or naive expectation implies the importance of long-distance FSI contributions to color-suppressed internal WW-emission via final-state rescatterings of the color-allowed tree amplitude.Comment: 17 pages. The Introduction is substantially revised and the order of the presentation in Sec. 2 is rearranged. To appear in Phys. Re

    Flavor SU(3) symmetry and QCD factorization in BPPB \to PP and PVPV decays

    Full text link
    Using flavor SU(3) symmetry, we perform a model-independent analysis of charmless Bˉu,d(Bˉs)PP, PV\bar B_{u,d} (\bar B_s) \to PP, ~PV decays. All the relevant topological diagrams, including the presumably subleading diagrams, such as the QCD- and EW-penguin exchange diagrams and flavor-singlet weak annihilation ones, are introduced. Indeed, the QCD-penguin exchange diagram turns out to be important in understanding the data for penguin-dominated decay modes. In this work we make efforts to bridge the (model-independent but less quantitative) topological diagram or flavor SU(3) approach and the (quantitative but somewhat model-dependent) QCD factorization (QCDF) approach in these decays, by explicitly showing how to translate each flavor SU(3) amplitude into the corresponding terms in the QCDF framework. After estimating each flavor SU(3) amplitude numerically using QCDF, we discuss various physical consequences, including SU(3) breaking effects and some useful SU(3) relations among decay amplitudes of BˉsPV\bar B_s \to PV and BˉdPV\bar B_d \to PV.Comment: 47 pages, 3 figures, 28 table

    Incorporating Inertia Into Multi-Agent Systems

    Get PDF
    We consider a model that demonstrates the crucial role of inertia and stickiness in multi-agent systems, based on the Minority Game (MG). The inertia of an agent is introduced into the game model by allowing agents to apply hypothesis testing when choosing their best strategies, thereby reducing their reactivity towards changes in the environment. We find by extensive numerical simulations that our game shows a remarkable improvement of global cooperation throughout the whole phase space. In other words, the maladaptation behavior due to over-reaction of agents is removed. These agents are also shown to be advantageous over the standard ones, which are sometimes too sensitive to attain a fair success rate. We also calculate analytically the minimum amount of inertia needed to achieve the above improvement. Our calculation is consistent with the numerical simulation results. Finally, we review some related works in the field that show similar behaviors and compare them to our work.Comment: extensively revised, 8 pages, 10 figures in revtex

    Final-State Phases in Charmed Meson Two-Body Nonleptonic Decays

    Get PDF
    Observed decay rates indicate large phase differences among the amplitudes for the charge states in DKˉπD \to \bar K \pi and DKˉπD \to \bar K^* \pi but relatively real amplitudes in the charge states for DKˉρD \to \bar K \rho. This feature is traced using an SU(3) flavor analysis to a sign flip in the contribution of one of the amplitudes contributing to the latter processes in comparison with its contribution to the other two sets. This amplitude may be regarded as an effect of rescattering and is found to be of magnitude comparable to others contributing to charmed particle two-body nonleptonic decays.Comment: 19 pages, latex, 4 figures, to be submitted to Phys. Rev.

    Cabibbo-allowed nonleptonic weak decays of charmed baryons

    Full text link
    Cabibbo-allowed nonleptonic weak decays of charmed baryons \lamc,~\xin,~\xip and Ωc0\Omega_c^0 into an octet baryon and a pseudoscalar meson are analyzed. The nonfactorizable contributions are evaluated under pole approximation, and it turns out that the ss-wave amplitudes are dominated by the low-lying \halfm resonances, while pp-wave ones governed by the ground-state \halfp poles. The MIT bag model is employed to calculate the coupling constants, form factors and baryon matrix elements. Our conclusions are: (i) ss waves are no longer dominated by commutator terms; the current-algebra method is certainly not applicable to parity-violating amplitudes, (ii) nonfactorizable WW exchange effects are generally important; they can be comparable to and somtimes even dominate over factorizable contributions, depending on the decay modes under consideration, (iii) large-NcN_c approximation for factorizable amplitudes also works in the heavy baryon sector and it accounts for the color nonsuppression of \lamc\ri p\bar{K}^0 relative to \lamc\ri\Lambda\pi^+, (iv) a measurement of the decay rate and the sign of the α\alpha asymmetry parameter of certain proposed decay modes will help discern various models; especially the sign of α\alpha in \lamc\ri\Sigma\pi decays can be used to unambiguously differentiate recent theoretical schemes from current algebra, and (v) pp waves are the dominant contributions to the decays \lamc\ri\Xi^0 K^+ and \xin\ri\Sigma^+ K^-, but they are subject to a large cancellation; this renders present theoretical predictions on these two channels unreliable.Comment: PHYZZX, 31 pages, 3 tables, IP-ASTP-10-93, ITP-SB-93-2
    corecore