16 research outputs found

    An in vivo model for overloading-induced soft tissue injury

    Get PDF
    This proof-of-concept study demonstrates that repetitive loading to the pain threshold can safely recreate overloading-induced soft tissue damage and that localised tissue stiffening can be a potential marker for injury. This concept was demonstrated here for the soft tissue of the sole of the foot where it was found that repeated loading to the pain threshold led to long-lasting statistically significant stiffening in the overloaded areas. Loading at lower magnitudes did not have the same effect. This method can shed new light on the aetiology of overloading injury in the foot to improve the management of conditions such as diabetic foot ulceration and heel pain syndrome. Moreover, the link between overloading and tissue stiffening, which was demonstrated here for the first time for the plantar soft tissue, opens the way for an assessment of overloading thresholds that is not based on the subjective measurement of pain thresholds

    Shore hardness is a more representative measurement of bulk tissue biomechanics than of skin biomechanics.

    Get PDF
    To support the effective use of Shore hardness (SH) in research and clinical practice this study investigates whether SH should be interpreted as a measurement of skin or of bulk tissue biomechanics. A 3D finite element model of the heel and a validated model of a Shore-00 durometer were used to simulate testing for different combinations of stiffness and thickness in the skin and subcutaneous tissue. The results of this numerical analysis showed that SH is significantly more sensitive to changes in skin thickness, relatively to subcutaneous tissue, but equally sensitive to changes in the stiffness of either tissue. Indicatively, 25% reduction in skin thickness (0.3 mm thickness change) or in subcutaneous tissue thickness (5.9 mm thickness change), reduced SH by 7% or increased SH by 2% respectively. At the same time, 25% reduction in skin stiffness (10.1 MPa change in initial shear modulus) or of subcutaneous tissue (4.1 MPa change in initial shear modulus) led to 11% or 8% reduction in SH respectively. In the literature, SH is commonly used to study skin biomechanics. However, this analysis indicates that SH quantifies the deformability of bulk tissue, not of skin. Measurements of skin thickness are also necessary for the correct interpretation of SH

    Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.

    Get PDF
    This study combines non-invasive mechanical testing with finite element (FE) modelling to assess for the first time the reliability of shear wave (SW) elastography for the quantitative assessment of the in-vivo nonlinear mechanical behavior of heel-pad. The heel-pads of five volunteers were compressed using a custom-made ultrasound indentation device. Tissue deformation was assessed from B-mode ultrasound and force was measured using a load cell to calculate the force - deformation graph of the indentation test. These results were used to design subject specific FE models and to inverse engineer the tissue's hyperelastic material coefficients and its stress - strain behavior. SW speed was measured for different levels of compression (from 0% to 50% compression). SW speed for 0% compression was used to assess the initial stiffness of heel-pad (i.e. initial shear modulus, initial Young's modulus). Changes in SW speed with increasing compressive loading were used to quantify the tissue's nonlinear mechanical behavior based on the theory of acoustoelasticity. Statistical analysis of results showed significant correlation between SW-based and FE-based estimations of initial stiffness, but SW underestimated initial shear modulus by 64%(±16). A linear relationship was found between the SW-based and FE-based estimations of nonlinear behavior. The results of this study indicate that SW elastography is capable of reliably assessing differences in stiffness, but the absolute values of stiffness should be used with caution. Measuring changes in SW speed for different magnitudes of compression enables the quantification of the tissue's nonlinear behavior which can significantly enhance the diagnostic value of SW elastography. [Abstract copyright: Copyright © 2018 Elsevier Ltd. All rights reserved.

    Optimised cushioning in diabetic footwear can significantly enhance their capacity to reduce plantar pressure

    Get PDF
    Background: Plantar pressure reduction with the use of cushioning materials play an important role in the clinical management of the diabetic foot. Previous studies in people without diabetes have shown that appropriate selection of the stiffness of such materials can significantly enhance their capacity to reduce pressure. However the significance of optimised cushioning has not been yet assessed for people with diabetic foot syndrome. Research question: What is the potential benefit of using footwear with optimised cushioning, with regards to plantar pressure reduction, in people with diabetes and peripheral neuropathy? Methods: Plantar pressure distribution was measured during walking for fifteen people with diabetic foot syndrome in a cohort observational study. The participants were asked to walk in the same type of footwear that was fitted with 3D-printed footbeds. These footbeds were used to change the stiffness of the entire sole-complex of the shoe; from very soft to very stiff. The stiffness that achieved the highest pressure reduction relative to a no-footbed condition was identified as the patient-specific optimum one. Results: The use of the patient-specific optimum stiffness reduced, on average, peak pressure by 46% (± 14%). Using the same stiffness across all participants reduced pressure reduction by at least nine percentile points (37% ± 17%); a statistically significant difference (paired samples t-test, t(13)= -3.733, p= 0.003, d= 0.997). Pearson correlation analysis also indicated that patient-specific optimum stiffness was significantly correlated with the participants’ body mass index (BMI), with stiffer materials needed for people with higher BMI (rs(14)= 0.609, p= 0.021). Significance: This study offers the first quantitative evidence in support of optimising cushioning in diabetic footwear as part of standard clinical practice. Further research is needed to develop a clinically applicable method to help professionals working with diabetic feet identify the optimum cushioning stiffness on a patient-specific basis

    Exercise as a mean to reverse the detrimental effect of high-fat diet on bone’s fracture characteristics

    Get PDF
    The aim of this study is to investigate whether exercise can reverse some of the adverse effects of high-fat-diet-induced obesity on lipid metabolism and bone biomechanical properties. A total of 26 adult male C57bl/6J mice were randomly assigned into three groups: (A) Control group (n=6), (B) High-fat diet group (n=10), (C) High-fat diet and exercise group (n=10). Body mass and relevant biochemical parameters were measured for the duration of the experimental protocol (37 weeks). Mechanical strength of both femurs of each animal was assessed in-vitro based on three point bending tests. It was revealed that exposure to high-fat diet led to significant increase of body mass and cholesterol levels and also to substantial changes in bone morphology and strength. Ultimate stress for the animals exposed to high-fat diet and those exposed to high-fat-diet and exercise was 25% and 24% lower compared to control, respectively. Exercise increased bone thickness by 15% compared to animals that were not exposed to exercise. It was concluded that high-fat-diet appears to have a detrimental effect on bone biomechanics and strength. Exercise reversed the reduction in bone thickness that appears to be induced by high-fat diet. However no statistically significant increase in bone strength was observed

    Reliability and validity of an enhanced paper grip test; a simple clinical test for assessing lower limb strength

    Get PDF
    Background The paper-grip-test (PGT) involves pulling a small card from underneath the participant’s foot while asking them to grip with their hallux. The PGT is shown to be effective in detecting foot muscle-weakening but its outcome is operator-dependent. To overcome this limitation, an enhanced PGT (EPGT) is proposed that replaces the pass/fail outcome of the PGT with a continuous measurement of the pulling force that is needed to remove the card (EPGT-force). Research question Is the EPGT-force an accurate, reliable and clinically applicable measurement of strength? Methods Reliability and clinical applicability were examined in two ways. Firstly, two examiners measured EPGT-force for twenty healthy volunteers in a test/retest set-up. EPGT force was measured using a dynamometer, the hallux grip force was measured using a pressure mat. The clinical applicability of the EPGT was tested in ten people with diabetes. Postural sway was also measured. Results Interclass correlation coefficients (ICC) revealed excellent inter-rater reliability (ICC > 0.75). Intra-rater reliability was excellent for the first examiner (ICC = 0.795) and good for the second (ICC = 0.703). Linear regression analysis indicated that hallux grip force accounted (on average) for 83%±4% of the variability in EPGT force. This strong relationship between EPGT force and hallux grip force remained when the test was performed in a clinical setting with the latter accounting for 88% in EPGT force variability. Spearman rank order correlation showed that people with diabetes with a higher difference in EPGT force between limbs swayed more. Significance EPGT force is a reliable and accurate measurement of hallux grip force. Hallux grip force was previously found to be strongly correlated to the strength of all muscle groups of the foot and ankle and to the ability to maintain balance. The proposed EPGT could be used to monitor muscle weakness in clinics for better falls-risk assessment

    A method for subject-specific modelling and optimisation of the cushioning properties of insole materials used in diabetic footwear

    No full text
    This study aims to develop a numerical method that can be used to investigate the cushioning properties of different insole materials on a subject-specific basis.Diabetic footwear and orthotic insoles play an important role for the reduction of plantar pressure in people with diabetes (type-2). Despite that, little information exists about their optimum cushioning properties.A new in-vivo measurement based computational procedure was developed which entails the generation of 2D subject-specific finite element models of the heel pad based on ultrasound indentation. These models are used to inverse engineer the material properties of the heel pad and simulate the contact between plantar soft tissue and a flat insole. After its validation this modelling procedure was utilised to investigate the importance of plantar soft tissue stiffness, thickness and loading for the correct selection of insole material.The results indicated that heel pad stiffness and thickness influence plantar pressure but not the optimum insole properties. On the other hand loading appears to significantly influence the optimum insole material properties. These results indicate that parameters that affect the loading of the plantar soft tissues such as body mass or a person's level of physical activity should be carefully considered during insole material selection

    The Influence of the Insertion Technique on the Pullout Force of Pedicle Screws An Experimental Study

    No full text
    Study Design. The pullout strength of a typical pedicle screw was evaluated experimentally for different screw insertion techniques. Objective. To conclude whether the self-tapping insertion technique is indeed the optimum one for self-tapping screws, with respect to the pullout strength. Summary of Background Data. It is reported in the literature that the size of the pilot-hole significantly influences the pullout strength of a self-tapping screw. In addition it is accepted that an optimum value of the diameter of the pilot-hole exists. For non self-tapping screw insertion it is reported that undertapping of the pilot-hole can increase its pullout strength. Finally it is known that in some cases orthopedic surgeons open the threaded holes, using another screw instead of a tap. Methods. A typical commercial self-tapping pedicle screw was inserted into blocks of Solid Rigid Polyurethane Foam (simulating osteoporotic cancellous bone), following different insertion techniques. The pullout force was measured according to the ASTM-F543-02 standard. The screw was inserted into previously prepared holes of different sizes, either threaded or cylindrical, to conclude whether an optimum size of the pilot-hole exists and whether tapping can increase the pullout strength. The case where the tapping is performed using another screw was also studied. Results. For screw insertion with tapping, decreasing the outer radius of the threaded hole from 1.00 to 0.87 of the screw’s outer radius increased the pullout force 9%. For insertion without tapping, decreasing the pilot-hole’s diameter from 0.87 to 0.47 of the screw’s outer diameter increased its pullout force 75%. Finally, tapping using another screw instead of a tap, gave results similar to those of conventional tapping. Conclusion. Undertapping of a pilot-hole either using a tap or another screw can increase the pullout strength of self-tapping pedicle screws

    Effective and clinically relevant optimisation of cushioning stiffness to maximise the offloading capacity of diabetic footwear

    No full text
    Introduction: Optimising the cushioning stiffness of diabetic footwear/orthoses can significantly enhance their offloading capacity. This study explores whether optimum cushioning stiffness can be predicted using simple demographic and anthropometric parameters. Methods: Sixty-nine adults with diabetes and loss of protective sensation in their feet were recruited for this cross-sectional observational study. In-shoe plantar pressure was measured using Pedar® for a neutral diabetic shoe (baseline) and after adding cushioning footbeds of varying stiffness. The cushioning stiffness that achieved maximum offloading was identified for each participant. The link between optimum cushioning stiffness and plantar loading or demographic/anthropometric parameters was assessed using multinomial regression. Results: People with higher baseline plantar loading required stiffer cushioning materials for maximum offloading. Using sex, age, weight, height, and shoe-size as covariates correctly predicted the cushioning stiffness that minimised peak pressure across the entire foot, or specifically in the metatarsal heads, midfoot and heel regions in 70%, 72%, 83% and 66% of participants respectively. Conclusions: Increased plantar loading is associated with the need for stiffer cushioning materials for maximum offloading. Patient-specific optimum cushioning stiffness can be predicted using five simple demographic/anthropometric parameters. These results open the way for methods to optimise cushioning stiffness as part of clinical practice
    corecore