3,752 research outputs found

    Wigner distributions for finite state systems without redundant phase point operators

    Get PDF
    We set up Wigner distributions for NN state quantum systems following a Dirac inspired approach. In contrast to much of the work on this case, requiring a 2N×2N2N\times 2N phase space, particularly when NN is even, our approach is uniformly based on an N×NN\times N phase space grid and thereby avoids the necessity of having to invoke a `quadrupled' phase space and hence the attendant redundance. Both NN odd and even cases are analysed in detail and it is found that there are striking differences between the two. While the NN odd case permits full implementation of the marginals property, the even case does so only in a restricted sense. This has the consequence that in the even case one is led to several equally good definitions of the Wigner distributions as opposed to the odd case where the choice turns out to be unique.Comment: Latex, 14 page

    Classical Light Beams and Geometric Phases

    Full text link
    We present a study of geometric phases in classical wave and polarisation optics using the basic mathematical framework of quantum mechanics. Important physical situations taken from scalar wave optics, pure polarisation optics, and the behaviour of polarisation in the eikonal or ray limit of Maxwell's equations in a transparent medium are considered. The case of a beam of light whose propagation direction and polarisation state are both subject to change is dealt with, attention being paid to the validity of Maxwell's equations at all stages. Global topological aspects of the space of all propagation directions are discussed using elementary group theoretical ideas, and the effects on geometric phases are elucidated.Comment: 23 pages, 1 figur

    The Sampling Theorem and Coherent State Systems in Quantum Mechanics

    Get PDF
    The well known Poisson Summation Formula is analysed from the perspective of the coherent state systems associated with the Heisenberg--Weyl group. In particular, it is shown that the Poisson summation formula may be viewed abstractly as a relation between two sets of bases (Zak bases) arising as simultaneous eigenvectors of two commuting unitary operators in which geometric phase plays a key role. The Zak bases are shown to be interpretable as generalised coherent state systems of the Heisenberg--Weyl group and this, in turn, prompts analysis of the sampling theorem (an important and useful consequence of the Poisson Summation Formula) and its extension from a coherent state point of view leading to interesting results on properties of von Neumann and finer lattices based on standard and generalised coherent state systems.Comment: 20 pages, Late

    Wigner-Weyl isomorphism for quantum mechanics on Lie groups

    Full text link
    The Wigner-Weyl isomorphism for quantum mechanics on a compact simple Lie group GG is developed in detail. Several New features are shown to arise which have no counterparts in the familiar Cartesian case. Notable among these is the notion of a `semiquantised phase space', a structure on which the Weyl symbols of operators turn out to be naturally defined and, figuratively speaking, located midway between the classical phase space TGT^*G and the Hilbert space of square integrable functions on GG. General expressions for the star product for Weyl symbols are presented and explicitly worked out for the angle-angular momentum case.Comment: 32 pages, Latex2

    Wigner distributions for finite dimensional quantum systems: An algebraic approach

    Get PDF
    We discuss questions pertaining to the definition of `momentum', `momentum space', `phase space', and `Wigner distributions'; for finite dimensional quantum systems. For such systems, where traditional concepts of `momenta' established for continuum situations offer little help, we propose a physically reasonable and mathematically tangible definition and use it for the purpose of setting up Wigner distributions in a purely algebraic manner. It is found that the point of view adopted here is limited to odd dimensional systems only. The mathematical reasons which force this situation are examined in detail.Comment: Latex, 13 page

    Phase-space descriptions of operators and the Wigner distribution in quantum mechanics II. The finite dimensional case

    Get PDF
    A complete solution to the problem of setting up Wigner distribution for N-level quantum systems is presented. The scheme makes use of some of the ideas introduced by Dirac in the course of defining functions of noncommuting observables and works uniformly for all N. Further, the construction developed here has the virtue of being essentially input-free in that it merely requires finding a square root of a certain N^2 x N^2 complex symmetric matrix, a task which, as is shown, can always be accomplished analytically. As an illustration, the case of a single qubit is considered in some detail and it is shown that one recovers the result of Feynman and Wootters for this case without recourse to any auxiliary constructs.Comment: 14 pages, typos corrected, para and references added in introduction, submitted to Jour. Phys.

    The Schwinger Representation of a Group: Concept and Applications

    Full text link
    The concept of the Schwinger Representation of a finite or compact simple Lie group is set up as a multiplicity-free direct sum of all the unitary irreducible representations of the group. This is abstracted from the properties of the Schwinger oscillator construction for SU(2), and its relevance in several quantum mechanical contexts is highlighted. The Schwinger representations for SU(2),SO(3)SU(2), SO(3) and SU(n) for all nn are constructed via specific carrier spaces and group actions. In the SU(2) case connections to the oscillator construction and to Majorana's theorem on pure states for any spin are worked out. The role of the Schwinger Representation in setting up the Wigner-Weyl isomorphism for quantum mechanics on a compact simple Lie group is brought out.Comment: Latex, 17 page
    corecore