162 research outputs found

    Electrophysiological Mechanisms of Ventricular Fibrillation Induction

    Get PDF
    Ventricular fibrillation (VF) is known as a main responsible cause of sudden cardiac death which claims thousands of lives each year. Although the mechanism of VF induction has been investigated for over a century, its definite mechanism is still unclear. In the past few decades, the development of new advance technologies has helped investigators to understand how the strong stimulus or the shock induces VF. New hypotheses have been proposed to explain the mechanism of VF induction. This article reviews most commonly proposed hypotheses that are believed to be the mechanism of VF induction

    Links Between Obesity-Induced Brain Insulin Resistance, Brain Mitochondrial Dysfunction, and Dementia

    Get PDF
    It is widely recognized that obesity and associated metabolic changes are considered a risk factor to age-associated cognitive decline. Inflammation and increased oxidative stress in peripheral areas, following obesity, are patently the major contributory factors to the degree of the severity of brain insulin resistance as well as the progression of cognitive impairment in the obese condition. Numerous studies have demonstrated that the alterations in brain mitochondria, including both functional and morphological changes, occurred following obesity. Several studies also suggested that brain mitochondrial dysfunction may be one of underlying mechanism contributing to brain insulin resistance and cognitive impairment in the obese condition. Thus, this review aimed to comprehensively summarize and discuss the current evidence from various in vitro, in vivo, and clinical studies that are associated with obesity, brain insulin resistance, brain mitochondrial dysfunction, and cognition. Contradictory findings and the mechanistic insights about the roles of obesity, brain insulin resistance, and brain mitochondrial dysfunction on cognition are also presented and discussed. In addition, the potential therapies for obese-insulin resistance are reported as the therapeutic strategies which exert the neuroprotective effects in the obese-insulin resistant condition

    Mitochondrial Link Between Metabolic Syndrome and Pre-Alzheimer’s Disease

    Get PDF
    There is much evidence to demonstrate that the presence of the metabolic syndrome (MetS) is associated with an increase in the incidence of pre-Alzheimer’s disease. The possible underlying mechanisms linking pre-Alzheimer’s disease and MetS are still unclear. This study summarizes and discusses the potential mechanisms involved in pre-Alzheimer’s disease under MetS conditions, including an increased brain oxidative stress, brain inflammation, brain mitochondrial dysfunction, hyper-phosphorylated tau protein, and amyloid beta production. This report focuses on brain mitochondrial alterations in cases of pre-Alzheimer’s disease where MetS is also extant. The data from in vitro, in vivo, and clinical studies are included. In addition, potential interventions against pre-Alzheimer’s disease in conjunction with MetS are summarized and discussed

    Cellular Electrophysiology of Iron-Overloaded Cardiomyocytes

    Get PDF
    Iron, the most abundant transition metal element in the human body, plays an essential role in many physiological processes. However, without a physiologically active excretory pathway, iron is subject to strict homeostatic processes acting upon its absorption, storage, mobilization, and utilization. These intricate controls are perturbed in primary and secondary hemochromatoses, leading to a deposition of excess iron in multiple vital organs including the heart. Iron overload cardiomyopathy is the leading cause of mortality in patients with iron overload conditions. Apart from mechanical deterioration of the siderotic myocardium, arrhythmias reportedly contribute to a substantial portion of cardiac death associated with iron overload. Despite this significant impact, the cellular mechanisms of electrical disturbances in an iron-overloaded heart are still incompletely characterized. This review article focuses on cellular electrophysiological studies that directly investigate the effects of iron overload on the function of cardiac ion channels, including trans-sarcolemmal and sarcoplasmic reticulum Ca2+ fluxes, as well as cardiac action potential morphology. Our ultimate aim is to provide a comprehensive summary of the currently available information that will encourage and facilitate further mechanistic elucidation of iron-induced pathoelectrophysiological changes in the heart

    Damaging Effects of Bisphenol A on the Kidney and the Protection by Melatonin: Emerging Evidences from In Vivo and In Vitro Studies

    Get PDF
    This study investigates the effects of bisphenol A (BPA) contamination on the kidney and the possible protection by melatonin in experimental rats and isolated mitochondrial models. Rats exposed to BPA (50, 100, and 150 mg/kg, i.p.) for 5 weeks demonstrated renal damages as evident by increased serum urea and creatinine and decreased creatinine clearance, together with the presence of proteinuria and glomerular injuries in a dose-dependent manner. These changes were associated with increased lipid peroxidation and decreased antioxidant glutathione and superoxide dismutase. Mitochondrial dysfunction was also evident as indicated by increased reactive oxygen species production, decreased membrane potential change, and mitochondrial swelling. Coadministration of melatonin resulted in the reversal of all the changes caused by BPA. Studies using isolated mitochondria showed that BPA incubation produced dose-dependent impairment in mitochondrial function. Preincubation with melatonin was able to sustain mitochondrial function and architecture and decreases oxidative stress upon exposure to BPA. The findings indicated that BPA is capable of acting directly on the kidney mitochondria, causing mitochondrial oxidative stress, dysfunction, and subsequently, leading to whole organ damage. Emerging evidence further suggests the protective benefits of melatonin against BPA nephrotoxicity, which may be mediated, in part, by its ability to diminish oxidative stress and maintain redox equilibrium within the mitochondria

    Comparisons of serum non-transferrin-bound iron levels and fetal cardiac function between fetuses affected with hemoglobin Bart’s disease and normal fetuses

    Get PDF
    ObjectiveTo compare the levels of Non-transferrin bound iron (NTBI) in fetuses with anemia, using Hb Bart’s disease as a study model, and those in unaffected fetuses and to determine the association between fetal cardiac function and the levels of NTBI.Patients and methodsA prospective study was conducted on pregnancies at risk of fetal Hb Bart’s disease. All fetuses underwent standard ultrasound examination at 18–22 weeks of gestation for fetal biometry, anomaly screening and fetal cardiac function. After that, 2 ml of fetal blood was taken by cordocentesis to measure NTBI by Labile Plasma Iron (LPI), serum iron, hemoglobin and hematocrit. The NTBI levels of both groups were compared and the correlation between NTBI and fetal cardiac function was determined.ResultsA total of 50 fetuses, including 20 fetuses with Hb Bart’s disease and 30 unaffected fetuses were recruited. There was a significant increase in the level of serum iron in the affected group (median: 22.7 vs. 9.7; p-value: 0.013) and also a significant increase in NTBI when compared with those of the unaffected fetuses (median 0.11 vs. 0.07; p-value: 0.046). In comparisons of fetal cardiac function, myocardial performance (Tei) index of both sides was significantly increased in the affected group (left Tei: p = 0.001, Right Tei: p = 0.008). Also, isovolumetric contraction time (ICT) was also significantly prolonged (left ICT: p = 0.00, right ICT: p = 0.000). Fetal LPI levels were significantly correlated inversely with fetal hemoglobin levels (p = 0.030) but not significantly correlated with the fetal serum iron levels (p = 0.138). Fetal LPI levels were also significantly correlated positively with myocardial performance index (Tei) of both sides (right Tei: R = 0.000, left Tei: R = 0.000) and right ICT (R = 0.013), but not significantly correlated with left ICT (R = 0.554).ConclusionAnemia caused by fetal Hb Bart’s disease in pre-hydropic stage is significantly associated with fetal cardiac dysfunction and increased fetal serum NTBI levels which are significantly correlated with worsening cardiac dysfunction. Nevertheless, based on the limitations of the present study, further studies including long-term data are required to support a role of fetal anemia as well as increased fetal serum NTBI levels in development of subsequent heart failure or cardiac compromise among the survivors, possibly predisposing to cardiovascular disease in adult life

    Intermittent left cervical vagal nerve stimulation damages the stellate ganglia and reduces the ventricular rate during sustained atrial fibrillation in ambulatory dogs

    Get PDF
    BACKGROUND: The effects of intermittent open-loop vagal nerve stimulation (VNS) on the ventricular rate (VR) during atrial fibrillation (AF) remain unclear. OBJECTIVE: The purpose of this study was to test the hypothesis that VNS damages the stellate ganglion (SG) and improves VR control during persistent AF. METHODS: We performed left cervical VNS in ambulatory dogs while recording the left SG nerve activity (SGNA) and vagal nerve activity. Tyrosine hydroxylase (TH) staining and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining were used to assess neuronal cell death in the SG. RESULTS: We induced persistent AF by atrial pacing in 6 dogs, followed by intermittent VNS with short ON-time (14 seconds) and long OFF-time (66 seconds). The integrated SGNA and VR during AF were 4.84 mV·s (95% confidence interval [CI] 3.08-6.60 mV·s) and 142 beats/min (95% CI 116-168 beats/min), respectively. During AF, VNS reduced the integrated SGNA and VR, respectively, to 3.74 mV·s (95% CI 2.27-5.20 mV·s; P = .021) and 115 beats/min (95% CI 96-134 beats/min; P = .016) during 66-second OFF-time and to 4.07 mV·s (95% CI 2.42-5.72 mV·s; P = .037) and 114 beats/min (95% CI 83-146 beats/min; P = .039) during 3-minute OFF-time. VNS increased the frequencies of prolonged (>3 seconds) pauses during AF. TH staining showed large confluent areas of damage in the left SG, characterized by pyknotic nuclei, reduced TH staining, increased percentage of TH-negative ganglion cells, and positive TUNEL staining. Occasional TUNEL-positive ganglion cells were also observed in the right SG. CONCLUSION: VNS damaged the SG, leading to reduced SGNA and better rate control during persistent AF

    Potential mechanisms responsible for cardioprotective effects of sodium–glucose co-transporter 2 inhibitors

    No full text
    Abstract Diabetes mellitus currently affects over 350 million patients worldwide and is associated with many deaths from cardiovascular complications. Sodium–glucose co-transporter 2 (SGLT-2) inhibitors are a novel class of antidiabetic drugs with cardiovascular benefits beyond other antidiabetic drugs. In the EMPA-REG OUTCOME trial, empagliflozin significantly decreases the mortality rate from cardiovascular causes [38% relative risk reduction (RRR)], the mortality rate from all-causes (32% RRR) and the rate of heart failure hospitalization (35% RRR) in diabetic patients with established cardiovascular diseases. The possible mechanisms of SGLT-2 inhibitors are proposed to be systemic effects by hemodynamic and metabolic actions. However, the direct mechanisms are not fully understood. In this review, reports concerning the effects of SGLT-2 inhibitors in models of diabetic cardiomyopathy, heart failure and myocardial ischemia from in vitro, in vivo as well as clinical reports are comprehensively summarized and discussed. By current evidences, it may be concluded that the direct effects of SGLT-2 inhibitors are potentially mediated through their ability to reduce cardiac inflammation, oxidative stress, apoptosis, mitochondrial dysfunction and ionic dyshomeostasis

    Recent Advances in Mitochondrial Fission/Fusion-Targeted Therapy in Doxorubicin-Induced Cardiotoxicity

    No full text
    Doxorubicin (DOX) has been recognized as one of the most effective chemotherapies and extensively used in the clinical settings of human cancer. However, DOX-mediated cardiotoxicity is known to compromise the clinical effectiveness of chemotherapy, resulting in cardiomyopathy and heart failure. Recently, accumulation of dysfunctional mitochondria via alteration of the mitochondrial fission/fusion dynamic processes has been identified as a potential mechanism underlying DOX cardiotoxicity. DOX-induced excessive fission in conjunction with impaired fusion could severely promote mitochondrial fragmentation and cardiomyocyte death, while modulation of mitochondrial dynamic proteins using either fission inhibitors (e.g., Mdivi-1) or fusion promoters (e.g., M1) can provide cardioprotection against DOX-induced cardiotoxicity. In this review, we focus particularly on the roles of mitochondrial dynamic pathways and the current advanced therapies in mitochondrial dynamics-targeted anti-cardiotoxicity of DOX. This review summarizes all the novel insights into the development of anti-cardiotoxic effects of DOX via the targeting of mitochondrial dynamic pathways, thereby encouraging and guiding future clinical investigations to focus on the potential application of mitochondrial dynamic modulators in the setting of DOX-induced cardiotoxicity
    • …
    corecore