42 research outputs found

    Strongly aligned molecules inside helium droplets in the near-adiabatic regime

    Full text link
    Iodine (I2_2) molecules embedded in He nanodroplets are aligned by a 160 ps long laser pulse. The highest degree of alignment, occurring at the peak of the pulse and quantified by cos2θ2D\langle \cos^2 \theta_{2D} \rangle, is measured as a function of the laser intensity. The results are well described by cos2θ2D\langle \cos^2 \theta_{2D} \rangle calculated for a gas of isolated molecules each with an effective rotational constant of 0.6 times the gas-phase value, and at a temperature of 0.4 K. Theoretical analysis using the angulon quasiparticle to describe rotating molecules in superfluid helium rationalizes why the alignment mechanism is similar to that of isolated molecules with an effective rotational constant. A major advantage of molecules in He droplets is that their 0.4 K temperature leads to stronger alignment than what can generally be achieved for gas phase molecules -- here demonstrated by a direct comparison of the droplet results to measurements on a \sim 1 K supersonic beam of isolated molecules. This point is further illustrated for more complex system by measurements on 1,4-diiodobenzene and 1,4-dibromobenzene. For all three molecular species studied the highest values of cos2θ2D\langle \cos^2 \theta_{2D} \rangle achieved in He droplets exceed 0.96.Comment: 11 pages, 8 figure

    Excited rotational states of molecules in a superfluid

    Full text link
    We combine experimental and theoretical approaches to explore excited rotational states of molecules embedded in helium nanodroplets using CS2_2 and I2_2 as examples. Laser-induced nonadiabatic molecular alignment is employed to measure spectral lines for rotational states extending beyond those initially populated at the 0.37 K droplet temperature. We construct a simple quantum mechanical model, based on a linear rotor coupled to a single-mode bosonic bath, to determine the rotational energy structure in its entirety. The calculated and measured spectral lines are in good agreement. We show that the effect of the surrounding superfluid on molecular rotation can be rationalized by a single quantity -- the angular momentum, transferred from the molecule to the droplet.Comment: 5 pages, 4 figures; 5 pages, 3 figure

    Probing ultrafast C-Br bond fission in the UV photochemistry of bromoform with core-to-valence transient absorption spectroscopy.

    Get PDF
    UV pump-extreme UV (XUV) probe femtosecond transient absorption spectroscopy is used to study the 268 nm induced photodissociation dynamics of bromoform (CHBr3). Core-to-valence transitions at the Br(3d) absorption edge (∼70 eV) provide an atomic scale perspective of the reaction, sensitive to changes in the local valence electronic structure, with ultrafast time resolution. The XUV spectra track how the singly occupied molecular orbitals of transient electronic states develop throughout the C-Br bond fission, eventually forming radical Br and CHBr2 products. Complementary ab initio calculations of XUV spectral fingerprints are performed for transient atomic arrangements obtained from sampling excited-state molecular dynamics simulations. C-Br fission along an approximately CS symmetrical reaction pathway leads to a continuous change of electronic orbital characters and atomic arrangements. Two timescales dominate changes in the transient absorption spectra, reflecting the different characteristic motions of the light C and H atoms and the heavy Br atoms. Within the first 40 fs, distortion from C3v symmetry to form a quasiplanar CHBr2 by the displacement of the (light) CH moiety causes significant changes to the valence electronic structure. Displacement of the (heavy) Br atoms is delayed and requires up to ∼300 fs to form separate Br + CHBr2 products. We demonstrate that transitions between the valence-excited (initial) and valence + core-excited (final) state electronic configurations produced by XUV absorption are sensitive to the localization of valence orbitals during bond fission. The change in valence electron-core hole interaction provides a physical explanation for spectral shifts during the process of bond cleavage

    Rotational coherence spectroscopy of molecules in helium nanodroplets: Reconciling the time and the frequency domains

    Full text link
    Alignment of OCS, CS2_2 and I2_2 molecules embedded in helium nanodroplets is measured as a function of time following rotational excitation by a non-resonant, comparatively weak ps laser pulse. The distinct peaks in the power spectra, obtained by Fourier analysis, are used to determine the rotational, B, and centrifugal distortion, D, constants. For OCS, B and D match the values known from IR spectroscopy. For CS2_2 and I2_2, they are the first experimental results reported. The alignment dynamics calculated from the gas-phase rotational Schr\"{o}dinger equation, using the experimental in-droplet B and D values, agree in detail with the measurement for all three molecules. The rotational spectroscopy technique for molecules in helium droplets introduced here should apply to a range of molecules and complexes.Comment: ASC and LC contributed equally. 7 pages, 3 figure

    Photoelectron angular distributions from resonant two-photon ionization of adiabatically aligned naphthalene and aniline molecules

    Get PDF
    Photoelectron images have been measured following the ionisation of aligned distributions of gas phase naphthalene and aniline molecules. Alignment in the adiabatic regime was achieved by interaction with a 100 ps infrared laser pulse, with ionisation achieved in a two-photon resonant scheme using a low intensity UV pulse of ∼6 ps duration. The resulting images are found to exhibit anisotropy that increases when the alignment pulse is present, with the aniline PADs peaking along the polarisation vector of the ionising light and the naphthalene PADs developing a characteristic four-lobed structure. Photoelectron angular distributions (PADs) that result from the ionisation of unaligned and fully aligned distributions of molecules are calculated using the ePolyScat ab initio suite and converted into two-dimensional photoelectron images. In the case of naphthalene excellent agreement is observed between experiment and the simulation for the fully aligned distribution, showing that the alignment step allows us to probe the molecular frame, but in the case of aniline it is clear that additional processes occur following the one-photon resonant step

    Probing nonadiabatic dynamics in isolated molecules with ultrafast velocity map imaging

    Get PDF
    Two complementary experiments were used to study the ultrafast dynamics of large molecules in the gas phase. Both experiments used time-resolved pump-probe velocity map imaging to monitor energetically dispersed spectra of isolated systems on a femtosecond timescale. A ‘bottom-up’ methodology is applied, whereby initially simple, small, systems are studied in a high level of detail, and then the complexity of system studied is gradually increased. The overall goal was to explore the concept of photostability, the mechanism whereby molecules can withstand bombardment by visible and ultraviolet light, especially in biomolecules. In the first set of experiments, based in Warwick University, the dissociation of hydrogen atoms from neutral phenol and 2-hydroxy phenol (catechol) following ultraviolet excitation was measured with femtosecond resolution. These experiments give unprecedented insight into the electronic structure of phenolic systems, and in particular hydrogen atom tunnelling underneath a conical intersection was directly observed. Varying the excitation energy allowed the transition from tunnelling dynamics to direct dissociation dynamics to be observed. The second set of experiments, completed at Durham University, performed timeresolved photoelectron spectroscopy on large gaseous anions from an electrospray source. The electrospray technique allows very large ions to be introduced into the gas phase, so the bottom-up methodology can be continued. First, the dynamics of the common dye indigo carmine were explored, demonstrating that excited state proton transfer accounts for its photostability. Secondly, the dynamics of the nucleotides making up DNA were explored. The dynamics of nucleobase chromophores were shown to map onto larger nucleotide and oligonucleotide systems, retaining ultrafast photostable properties. Finally, a new instrument was designed and constructed in Warwick. This machine will use laser desorption techniques to help further extend the size range isolated dynamics can be studied in, this time for neutrals. Overall, the bottom-up methodology grants insight into the excited state dynamics of real-world relevant molecules, at an extremely high level of detail
    corecore