12,522 research outputs found

    Order parameter and detection for crystallized dipolar bosons in lattices

    Get PDF
    We explore the ground-state properties of bosons with dipole-dipole interactions in a one-dimensional optical lattice. Remarkably, a crystallization process happens for strong dipolar interactions. Herein, we provide a detailed characterization and a way to measure the resulting crystal phase. Using the eigenvalues of the reduced one-body density matrix we define an order parameter that yields a phase diagram in agreement with an analysis of the density and two-body density. We demonstrate that the phase diagram can be detected experimentally using the variance of single-shot measurements.Comment: 6 pages, 3 figures. Supplementary Information included. Software available at http://ultracold.org

    Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in alzheimer’s disease and parkinson’s disease

    Get PDF
    Alzheimer's disease and Parkinson's disease are two common neurodegenerative diseases of the elderly people that have devastating effects in terms of morbidity and mortality. The predominant form of the disease in either case is sporadic with uncertain etiology. The clinical features of Parkinson's disease are primarily motor deficits, while the patients of Alzheimer's disease present with dementia and cognitive impairment. Though neuronal death is a common element in both the disorders, the postmortem histopathology of the brain is very characteristic in each case and different from each other. In terms of molecular pathogenesis, however, both the diseases have a significant commonality, and proteinopathy (abnormal accumulation of misfolded proteins), mitochondrial dysfunction and oxidative stress are the cardinal features in either case. These three damage mechanisms work in concert, reinforcing each other to drive the pathology in the aging brain for both the diseases; very interestingly, the nature of interactions among these three damage mechanisms is very similar in both the diseases, and this review attempts to highlight these aspects. In the case of Alzheimer's disease, the peptide amyloid beta (A beta) is responsible for the proteinopathy, while alpha-synuclein plays a similar role in Parkinson's disease. The expression levels of these two proteins and their aggregation processes are modulated by reactive oxygen radicals and transition metal ions in a similar manner. In turn, these proteins - as oligomers or in aggregated forms - cause mitochondrial impairment by apparently following similar mechanisms. Understanding the common nature of these interactions may, therefore, help us to identify putative neuroprotective strategies that would be beneficial in both the clinical conditions

    Minimizing Running Costs in Consumption Systems

    Full text link
    A standard approach to optimizing long-run running costs of discrete systems is based on minimizing the mean-payoff, i.e., the long-run average amount of resources ("energy") consumed per transition. However, this approach inherently assumes that the energy source has an unbounded capacity, which is not always realistic. For example, an autonomous robotic device has a battery of finite capacity that has to be recharged periodically, and the total amount of energy consumed between two successive charging cycles is bounded by the capacity. Hence, a controller minimizing the mean-payoff must obey this restriction. In this paper we study the controller synthesis problem for consumption systems with a finite battery capacity, where the task of the controller is to minimize the mean-payoff while preserving the functionality of the system encoded by a given linear-time property. We show that an optimal controller always exists, and it may either need only finite memory or require infinite memory (it is decidable in polynomial time which of the two cases holds). Further, we show how to compute an effective description of an optimal controller in polynomial time. Finally, we consider the limit values achievable by larger and larger battery capacity, show that these values are computable in polynomial time, and we also analyze the corresponding rate of convergence. To the best of our knowledge, these are the first results about optimizing the long-run running costs in systems with bounded energy stores.Comment: 32 pages, corrections of typos and minor omission

    Phases, many-body entropy measures and coherence of interacting bosons in optical lattices

    Get PDF
    Already a few bosons with contact interparticle interactions in small optical lattices feature a variety of quantum phases: superfluid, Mott-insulator and fermionized Tonks gases can be probed in such systems. To detect these phases -- pivotal for both experiment and theory -- as well as their many-body properties we analyze several distinct measures for the one-body and many-body Shannon information entropies. We exemplify the connection of these entropies with spatial correlations in the many-body state by contrasting them to the Glauber normalized correlation functions. To obtain the ground-state for lattices with commensurate filling (i.e. an integer number of particles per site) for the full range of repulsive interparticle interactions we utilize the multiconfigurational time-dependent Hartree method for bosons (MCTDHB) in order to solve the many-boson Schr\"odinger equation. We demonstrate that all emergent phases -- the superfluid, the Mott insulator, and the fermionized gas can be characterized equivalently by our many-body entropy measures and by Glauber's normalized correlation functions. In contrast to our many-body entropy measures, single-particle entropy cannot capture these transitions.Comment: 11 pages, 7 figures, software available at http://ultracold.or

    Detecting One-Dimensional Dipolar Bosonic Crystal Orders via Full Distribution Functions

    Full text link
    We explore the groundstates of a few dipolar bosons in optical lattices with incommensurate filling. The competition of kinetic, potential, and interaction energies leads to the emergence of a variety of crystal state orders with characteristic one- and two-body densities. We probe the transitions between these orders and construct the emergent state diagram as a function of the dipolar interaction strength and the lattice depth. We show that the crystal state orders can be observed using the full distribution functions of the particle number extracted from simulated single-shot images.Comment: 6 pages, 3 Figures in main text. Supplementary Information included. This version accepted for publication at Physical Review Letters. Software for the computations available at http://www.ultracold.or

    Condensate fragmentation as a sensitive measure of the quantum many-body behavior of bosons with long-range interactions

    Get PDF
    The occupation of more than one single-particle state and hence the emergence of fragmentation is a many-body phenomenon universal to systems of spatially confined interacting bosons. In the present study, we investigate the effect of the range of the interparticle interactions on the fragmentation degree of one- and two-dimensional systems. We solve the full many-body Schr\"odinger equation of the system using the recursive implementation of the multiconfigurational time-dependent Hartree for bosons method, R-MCTDHB. The dependence of the degree of fragmentation on dimensionality, particle number, areal or line density and interaction strength is assessed. It is found that for contact interactions, the fragmentation is essentially density independent in two dimensions. However, fragmentation increasingly depends on density the more long-ranged the interactions become. The degree of fragmentation is increasing, keeping the particle number NN fixed, when the density is decreasing as expected in one spatial dimension. We demonstrate that this remains, nontrivially, true also for long-range interactions in two spatial dimensions. We, finally, find that within our fully self-consistent approach, the fragmentation degree, to a good approximation, decreases universally as N1/2N^{-1/2} when only NN is varied.Comment: 8 pages of RevTex4-1, 5 figure

    Evidence for pairing above Tc from the dispersion in the pseudogap phase of cuprates

    Get PDF
    In the underdoped high temperature superconductors, instead of a complete Fermi surface above Tc, only disconnected Fermi arcs appear, separated by regions that still exhibit an energy gap. We show that in this pseudogap phase, the energy-momentum relation of electronic excitations near E_F behaves like the dispersion of a normal metal on the Fermi arcs, but like that of a superconductor in the gapped regions. We argue that this dichotomy in the dispersion is hard to reconcile with a competing order parameter, but is consistent with pairing without condensation

    Accelerating Universe as Window for Extra Dimensions

    Full text link
    Homogeneous cosmological solutions are obtained in five dimensional space time assuming equations of state p=kρ p = k\rho and p5=γρ p_{5}= \gamma\rho where p is the isotropic 3 - pressure and p5p_{5}, that for the fifth dimension. Using different values for the constants k and γ\gamma many known solutions are rediscovered. Further the current acceleration of the universe has led us to investigate higher dimensional gravity theory, which is able to explain acceleration from a theoretical view point without the need of introducing dark energy by hand. We argue that the terms containing higher dimensional metric coefficients produce an extra negative pressure that apparently drives an acceleration of the 3D space, tempting us to suggest that the accelerating universe seems to act as a window to the existence of extra spatial dimensions. Interestingly the 5D matter field remains regular while the \emph{effective} negative pressure is responsible for the inflation. Relaxing the assumptions of two equations of state we also present a class of solutions which provide early deceleration followed by a late acceleration in a unified manner. Interesting to point out that in this case our cosmology apparently mimics the well known quintessence scenario fuelled by a generalised Chaplygin-type of fluid where a smooth transition from a dust dominated model to a de Sitter like one takes place.Comment: 20 pages,3 figure
    corecore