28,628 research outputs found
Minimizing Running Costs in Consumption Systems
A standard approach to optimizing long-run running costs of discrete systems
is based on minimizing the mean-payoff, i.e., the long-run average amount of
resources ("energy") consumed per transition. However, this approach inherently
assumes that the energy source has an unbounded capacity, which is not always
realistic. For example, an autonomous robotic device has a battery of finite
capacity that has to be recharged periodically, and the total amount of energy
consumed between two successive charging cycles is bounded by the capacity.
Hence, a controller minimizing the mean-payoff must obey this restriction. In
this paper we study the controller synthesis problem for consumption systems
with a finite battery capacity, where the task of the controller is to minimize
the mean-payoff while preserving the functionality of the system encoded by a
given linear-time property. We show that an optimal controller always exists,
and it may either need only finite memory or require infinite memory (it is
decidable in polynomial time which of the two cases holds). Further, we show
how to compute an effective description of an optimal controller in polynomial
time. Finally, we consider the limit values achievable by larger and larger
battery capacity, show that these values are computable in polynomial time, and
we also analyze the corresponding rate of convergence. To the best of our
knowledge, these are the first results about optimizing the long-run running
costs in systems with bounded energy stores.Comment: 32 pages, corrections of typos and minor omission
Accelerating Universe from Extra Spatial Dimension
We present a simple higher dimensional FRW type of model where the
acceleration is apparently caused by the presence of the extra dimensions.
Assuming an ansatz in the form of the deceleration parameter we get a class of
solutions some of which shows the desirable feature of dimensional reduction as
well as reasonably good physical properties of matter. Interestingly we do not
have to invoke an extraneous scalar field or a cosmological constant to account
for this acceleration. One argues that the terms containing the higher
dimensional metric coefficients produces an extra negative pressure that
apparently drives the inflation of the 4D space with an accelerating phase. It
is further found that in line with the physical requirements our model admits
of a decelerating phase in the early era along with an accelerating phase at
present.Further the models asymptotically mimic a steady state type of universe
although it starts from a big type of singularity. Correspondence to Wesson's
induced matter theory is also briefly discussed and in line with it it is
argued that the terms containing the higher dimensional metric coefficients
apparently creates a negative pressure which drives the inflation of the
3-space with an accelerating phase.Comment: 0
Generalized Hawking-Page Phase Transition
The issue of radiant spherical black holes being in stable thermal
equilibrium with their radiation bath is reconsidered. Using a simple
equilibrium statistical mechanical analysis incorporating Gaussian thermal
fluctuations in a canonical ensemble of isolated horizons, the heat capacity is
shown to diverge at a critical value of the classical mass of the isolated
horizon, given (in Planckian units) by the {\it microcanonical} entropy
calculated using Loop Quantum Gravity. The analysis reproduces the Hawking-Page
phase transition discerned for anti-de Sitter black holes and generalizes it in
the sense that nowhere is any classical metric made use of.Comment: 9 Pages, Latex with 2 eps figure
Global monopole in scalar tensor theory
The well known monopole solution of Barriola and Vilenkin (BV) resulting from
the breaking of a global SO(3) symmetry is extended in general relativity along
with a zero mass scalar field and also in Brans-Dicke(BD) theory of gravity.In
the case of BD theory, the behaviour of spacetime and other variables such as
BD scalar field and the monopole energy density have been studied
numerically.For monopole along with a zero mass scalar field, exact solutions
are obtained and depending upon the choice of arbitary parameters, the
solutions either reduce to the BV case or to a pure scalar field solution as
special cases.It is interesting to note that unlike the BV case the global
monopole in the BD theory does exert gravitational pull on a test particle
moving in its spacetime.Comment: 12 pages LaTex, 3 postscript figures, Communicated to
Class.Quant.Gra
The Linear Model under Mixed Gaussian Inputs: Designing the Transfer Matrix
Suppose a linear model y = Hx + n, where inputs x, n are independent Gaussian
mixtures. The problem is to design the transfer matrix H so as to minimize the
mean square error (MSE) when estimating x from y. This problem has important
applications, but faces at least three hurdles. Firstly, even for a fixed H,
the minimum MSE (MMSE) has no analytical form. Secondly, the MMSE is generally
not convex in H. Thirdly, derivatives of the MMSE w.r.t. H are hard to obtain.
This paper casts the problem as a stochastic program and invokes gradient
methods. The study is motivated by two applications in signal processing. One
concerns the choice of error-reducing precoders; the other deals with selection
of pilot matrices for channel estimation. In either setting, our numerical
results indicate improved estimation accuracy - markedly better than those
obtained by optimal design based on standard linear estimators. Some
implications of the non-convexities of the MMSE are noteworthy, yet, to our
knowledge, not well known. For example, there are cases in which more pilot
power is detrimental for channel estimation. This paper explains why
Lensing of Fast Radio Bursts by Plasma Structures in Host Galaxies
Plasma lenses in the host galaxies of fast radio bursts (FRBs) can strongly
modulate FRB amplitudes for a wide range of distances, including the
Gpc distance of the repeater FRB121102. To produce caustics, the lens'
dispersion-measure depth (), scale size (), and distance
from the source () must satisfy . Caustics produce strong
magnifications () on short time scales ( hours to days and
perhaps shorter) along with narrow, epoch dependent spectral peaks (0.1 to
1~GHz). However, strong suppression also occurs in long-duration (
months) troughs. For geometries that produce multiple images, the resulting
burst components will arrive differentially by s to tens of ms and
they will show different apparent dispersion measures, pc cm. Arrival time perturbations may mask any
underlying periodicity with period s. When arrival times differ by
less than the burst width, interference effects in dynamic spectra are
expected. Strong lensing requires source sizes smaller than , which can be satisfied by compact objects such as
neutron star magnetospheres but not by AGNs. Much of the phenomenology of the
repeating fast radio burst source FRB121102 is similar to lensing effects. The
overall picture can be tested by obtaining wideband spectra of bursts (from
to 10 GHz and possibly higher), which can also be used to characterize the
plasma environment near FRB sources. A rich variety of phenomena is expected
from an ensemble of lenses near the FRB source. We discuss constraints on
densities, magnetic fields, and locations of plasma lenses related to
requirements for lensing to occur.Comment: 11 pages, 7 figures, submitted to the Astrophysical Journa
- …
