17,138 research outputs found

    Minimizing Running Costs in Consumption Systems

    Full text link
    A standard approach to optimizing long-run running costs of discrete systems is based on minimizing the mean-payoff, i.e., the long-run average amount of resources ("energy") consumed per transition. However, this approach inherently assumes that the energy source has an unbounded capacity, which is not always realistic. For example, an autonomous robotic device has a battery of finite capacity that has to be recharged periodically, and the total amount of energy consumed between two successive charging cycles is bounded by the capacity. Hence, a controller minimizing the mean-payoff must obey this restriction. In this paper we study the controller synthesis problem for consumption systems with a finite battery capacity, where the task of the controller is to minimize the mean-payoff while preserving the functionality of the system encoded by a given linear-time property. We show that an optimal controller always exists, and it may either need only finite memory or require infinite memory (it is decidable in polynomial time which of the two cases holds). Further, we show how to compute an effective description of an optimal controller in polynomial time. Finally, we consider the limit values achievable by larger and larger battery capacity, show that these values are computable in polynomial time, and we also analyze the corresponding rate of convergence. To the best of our knowledge, these are the first results about optimizing the long-run running costs in systems with bounded energy stores.Comment: 32 pages, corrections of typos and minor omission

    Additivity property and emergence of power laws in nonequilibrium steady states

    Full text link
    We show that an equilibriumlike additivity property can remarkably lead to power-law distributions observed frequently in a wide class of out-of-equilibrium systems. The additivity property can determine the full scaling form of the distribution functions and the associated exponents. The asymptotic behavior of these distributions is solely governed by branch-cut singularity in the variance of subsystem mass. To substantiate these claims, we explicitly calculate, using the additivity property, subsystem mass distributions in a wide class of previously studied mass aggregation models as well as in their variants. These results could help in the thermodynamic characterization of nonequilibrium critical phenomena.Comment: Revised longer version, 4 figure

    Phase transitions in Ising model on a Euclidean network

    Full text link
    A one dimensional network on which there are long range bonds at lattice distances l>1l>1 with the probability P(l)∝l−δP(l) \propto l^{-\delta} has been taken under consideration. We investigate the critical behavior of the Ising model on such a network where spins interact with these extra neighbours apart from their nearest neighbours for 0≤δ<20 \leq \delta < 2. It is observed that there is a finite temperature phase transition in the entire range. For 0≤δ<10 \leq \delta < 1, finite size scaling behaviour of various quantities are consistent with mean field exponents while for 1≤δ≤21\leq \delta\leq 2, the exponents depend on δ\delta. The results are discussed in the context of earlier observations on the topology of the underlying network.Comment: 7 pages, revtex4, 7 figures; to appear in Physical Review E, minor changes mad
    • …
    corecore