2,839 research outputs found

    Effect of hyperon-hyperon interaction on bulk viscosity and r-mode instability in neutron stars

    Full text link
    We investigate the effect of hyperon matter including hyperon-hyperon interaction on bulk viscosity. Equations of state are constructed within the framework of a relativistic field theoretical model where baryon-baryon interaction is mediated by the exchange of scalar and vector mesons. Hyperon-hyperon interaction is also taken into account by the exchange of two strange mesons. This interaction results in a smaller maximum mass neutron star compared with the case without the interaction. The coefficient of bulk viscosity due to the non-leptonic weak process is determined by these equations of state. The interacting hyperon matter reduces the bulk viscosity coefficient in a neutron star interior compared with the no interaction case. The r-mode instability is more effectively suppressed in hyperon-hyperon interaction case than that without the interaction.Comment: 25 pages, 10 figures; two new figures added and results and discussion section revised; final version to appear in PR

    Hyperon bulk viscosity in the presence of antikaon condensate

    Full text link
    We investigate the hyperon bulk viscosity due to the non-leptonic process n+p⇌p+Λn + p \rightleftharpoons p + \Lambda in K−K^- condensed matter and its effect on the r-mode instability in neutron stars. We find that the hyperon bulk viscosity coefficient in the presence of antikaon condensate is suppressed compared with the case without the condensate. The suppressed hyperon bulk viscosity in the superconducting phase is still an efficient mechanism to damp the r-mode instability in neutron stars.Comment: AASTeX; 21 pages including 5 figures; change in the title and replaced by the revised versio

    Probing dense matter in neutron stars with axial w-modes

    Full text link
    We study the problem of extracting information about composition and equation of state of dense matter in neutron star interior using axial w-modes. We determine complex frequencies of axial w-modes for a set of equations of state involving hyperons as well as Bose-Einstein condensates of antikaons adopting the continued fraction method. Hyperons and antikaon condensates result in softer equations of state leading to higher frequencies of first axial w-modes than that of nuclear matter case, whereas the opposite happens in case of damping times. The presence of condensates may lead to the appearance of a new stable branch of superdense stars beyond the neutron star branch called the third family. The existence of same mass compact stars in both branches are known as neutron star twins. Further investigation of twins reveal that first axial w-mode frequencies of superdense stars in the third family are higher than those of the corresponding twins in the neutron star branch.Comment: LaTeX; 23 pages including two tables and 11 figure

    A new approach to bulk viscosity in strange quark matter at high densities

    Full text link
    A new method is proposed to compute the bulk viscosity in strange quark matter at high densities. Using the method it is straightforward to prove that the bulk viscosity is positive definite, which is not so easy to accomplish in other approaches especially for multi-component fluids like strange quark matter with light up and down quarks and massive strange quarks.Comment: 7pages, talk given in SQM2008. Minor revisions, including clarification and updated reference

    Bulk viscosity and r-modes of neutron stars

    Full text link
    The bulk viscosity due to the non-leptonic process involving hyperons in K−K^- condensed matter is discussed here. We find that the bulk viscosity is modified in a superconducting phase. Further, we demonstrate how the exotic bulk viscosity coefficient influences rr-modes of neutron stars which might be sources of detectable gravitational waves.Comment: 4 page, 2 figures; presented in the Quark Matter 2008 held in Jaipur, India from 4-10 February, 2008; to be published in J. Phys.

    Evaporation of alpha particles from 31^31P nucleus

    Full text link
    The energy spectra of alpha particles have been measured in coincidence with the evaporation residues for the decay of the compound nucleus 31^31P produced in the reaction 19^19F (96 MeV) + 12^12C. The data have been compared with the predictions of the statistical model code CASCADE. It has been observed that significant deformation effect in the compound nucleus need to be considered in order to explain the shape of the evaporated alpha particle energy spectra.Comment: 4 pages, 3 figures, revtex, epsf styl

    Exclusive light particle measurements for the system 19^{19}F + 12^{12}C at 96 MeV

    Get PDF
    Decay sequence of hot {31}^P nucleus has been investigated through exclusive light charged particle measurements in coincidence with individual evaporation residues using the reaction {19}^F (96 MeV) + {12}^C. Information on the sequential decay chain have been extracted by confronting the data with the predictions of the statistical model. It is observed from the present analysis that such exclusive light charged particle data may be used as a powerful tool to probe the decay sequence of the hot light compound systems.Comment: 13 pages, 8 figures, Physical Review C (in press
    • …
    corecore