12 research outputs found

    Glycosylated extracellular mucin domains protect against SARS-CoV-2 infection at the respiratory surface

    Get PDF
    Mucins play an essential role in protecting the respiratory tract against microbial infections while also acting as binding sites for bacterial and viral adhesins. The heavily O-glycosylated gel-forming mucins MUC5AC and MUC5B eliminate pathogens by mucociliary clearance. Transmembrane mucins MUC1, MUC4, and MUC16 can restrict microbial invasion at the apical surface of the epithelium. In this study, we determined the impact of host mucins and mucin glycans on epithelial entry of SARS-CoV-2. Human lung epithelial Calu-3 cells express the SARS-CoV-2 entry receptor ACE2 and high levels of glycosylated MUC1, but not MUC4 and MUC16, on their cell surface. The O-glycan-specific mucinase StcE specifically removed the glycosylated part of the MUC1 extracellular domain while leaving the underlying SEA domain and cytoplasmic tail intact. StcE treatment of Calu-3 cells significantly enhanced infection with SARS-CoV-2 pseudovirus and authentic virus, while removal of sialic acid and fucose from the epithelial surface did not impact viral entry. In Calu-3 cells, the transmembrane mucin MUC1 and ACE2 are located to the apical surface in close proximity and StcE treatment results in enhanced binding of purified spike protein. Both MUC1 and MUC16 are expressed on the surface of human organoid-derived air-liquid interface (ALI) differentiated airway cultures and StcE treatment led to mucin removal and increased levels of SARS-CoV-2 replication. In these cultures, MUC1 was highly expressed in non-ciliated cells while MUC16 was enriched in goblet cells. In conclusion, the glycosylated extracellular domains of different transmembrane mucins might have similar protective functions in different respiratory cell types by restricting SARS-CoV-2 binding and entry

    Defensive Properties of Mucin Glycoproteins during Respiratory Infections-Relevance for SARS-CoV-2

    Get PDF
    Mucus plays a pivotal role in protecting the respiratory tract against microbial infections. It acts as a primary contact site to entrap microbes and facilitates their removal from the respiratory tract via the coordinated beating of motile cilia. The major components of airway mucus are heavily O-glycosylated mucin glycoproteins, divided into gel-forming mucins and transmembrane mucins. The gel-forming mucins MUC5AC and MUC5B are the primary structural components of airway mucus, and they enable efficient clearance of pathogens by mucociliary clearance. MUC5B is constitutively expressed in the healthy airway, whereas MUC5AC is upregulated in response to inflammatory challenge. MUC1, MUC4, and MUC16 are the three major transmembrane mucins of the respiratory tracts which prevent microbial invasion, can act as releasable decoy receptors, and activate intracellular signal transduction pathways. Pathogens have evolved virulence factors such as adhesins that facilitate interaction with specific mucins and mucin glycans, for example, terminal sialic acids. Mucin expression and glycosylation are dependent on the inflammatory state of the respiratory tract and are directly regulated by proinflammatory cytokines and microbial ligands. Gender and age also impact mucin glycosylation and expression through the female sex hormone estradiol and age-related downregulation of mucin production. Here, we discuss what is currently known about the role of respiratory mucins and their glycans during bacterial and viral infections of the airways and their relevance for the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the impact of microbe-mucin interaction in the respiratory tract could inspire the development of novel therapies to boost mucosal defense and combat respiratory infections

    Defensive Properties of Mucin Glycoproteins during Respiratory Infections-Relevance for SARS-CoV-2

    No full text
    Mucus plays a pivotal role in protecting the respiratory tract against microbial infections. It acts as a primary contact site to entrap microbes and facilitates their removal from the respiratory tract via the coordinated beating of motile cilia. The major components of airway mucus are heavily O-glycosylated mucin glycoproteins, divided into gel-forming mucins and transmembrane mucins. The gel-forming mucins MUC5AC and MUC5B are the primary structural components of airway mucus, and they enable efficient clearance of pathogens by mucociliary clearance. MUC5B is constitutively expressed in the healthy airway, whereas MUC5AC is upregulated in response to inflammatory challenge. MUC1, MUC4, and MUC16 are the three major transmembrane mucins of the respiratory tracts which prevent microbial invasion, can act as releasable decoy receptors, and activate intracellular signal transduction pathways. Pathogens have evolved virulence factors such as adhesins that facilitate interaction with specific mucins and mucin glycans, for example, terminal sialic acids. Mucin expression and glycosylation are dependent on the inflammatory state of the respiratory tract and are directly regulated by proinflammatory cytokines and microbial ligands. Gender and age also impact mucin glycosylation and expression through the female sex hormone estradiol and age-related downregulation of mucin production. Here, we discuss what is currently known about the role of respiratory mucins and their glycans during bacterial and viral infections of the airways and their relevance for the novel coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Understanding the impact of microbe-mucin interaction in the respiratory tract could inspire the development of novel therapies to boost mucosal defense and combat respiratory infections

    Antioxidant effect of ethanolic extract of <i style="">Piper betle</i> Linn. (Paan) on erythrocytes from patients with HbE-beta thalassemia

    No full text
    241-246HbE-beta thalassemia is caused by an interaction between HbE and defective b globin gene of thalassemia. Repeated blood transfusions cause an iron overload, triggering an enhanced generation of free radicals. In the present study, the anti-oxidant property of ethanolic extract of the leaves of Piper betle Linn. (PB) was evaluated in the erythrocytes from patients with HbE-beta thalassemia. In patients with HbE-beta thalassemia (n = 30) and age- and sex-matched healthy individuals (n = 30), the baseline level of reactive oxygen species (ROS) and free radical scavenging activity in the erythrocytes was measured by flow cytometry using dihydrodichlorofluorescein diacetate (H2DCFDA), in terms of the geometric mean fluorescence channel (GMFC). The baseline generation of ROS was significantly higher in the erythrocytes from patients with HbE-beta thalassemia, as compared to healthy volunteers, the GMFC being 67.20 ± 4.64 vs. 23.03 ± 1.88 (p2O2 (0.5-1.0 mM) induced a higher increase in the GMFC in the erythrocytes from patients with HbE-beta thalassemia, as compared to controls which was effectively reduced by PB. Taken together, PB showed promising anti-oxidant activity against the erythrocytes from patients with HbE-beta thalassemia

    The glycosylated extracellular domain of MUC1 protects against SARS-CoV-2 infection at the respiratory surface

    Get PDF
    Mucins play an essential role in protecting the respiratory tract against microbial infections. The heavily O-glycosylated gel-forming mucins MUC5AC and MUC5B eliminate pathogens by mucociliary clearance while transmembrane mucins MUC1, MUC4, and MUC16 restrict microbial invasion at the apical surface of the epithelium. In this study, we determined the impact of host mucins and mucin glycans on SARS-CoV-2 spike-mediated epithelial entry. Human lung epithelial Calu-3 cells have endogenous expression of the SARS-CoV-2 entry receptor ACE2 and express high levels of glycosylated MUC1 on the surface but not MUC4 and MUC16. Removal of the MUC1 extracellular domain (ED) using the O-glycan-specific mucinase StcE greatly enhanced spike binding and viral infection. By contrast, removal of mucin glycans sialic acid and fucose did not impact viral invasion. This study implicates the glycosylated ED of MUC1 as an important component of the host defense that restricts the severity of SARS-CoV-2 infection

    Overcoming multidrug resistance (MDR) in cancer in vitro and in vivo by a quinoline derivative

    No full text
    Multidrug resistance (MDR) mediated by the over expression of drug efflux protein P-glycoprotein (P-gp) is one of the major impediments to successful treatment of cancer. P-gp acts as an energy-dependent drug efflux pump and reduces the intracellular concentration of structurally unrelated drugs inside the cells. Therefore, there is an urgent need for development of new compound that are less toxic and effective against drug resistance in cancer. Preclinical studies have shown that quinoline derivatives possess anticancer activities. Here, we report the antitumor potential of quinoline derivative, 2-(2-Methyl-quinolin-4ylamino)-N-phenyl acetamide (S4). To evaluate the cytotoxic potential of S4, we used four different cell lines (Hela, HCT-116, CCRF-CEM, and CEM/ADR 5000) in vitro, and showed that S4 kills doxorubicin resistant T lymphoblastic leukemia cell, CEM/ADR 5000 in a concentration dependent manner while others remains unaffected. Moreover, S4 induces apoptosis in CEM/ADR 5000 cells through generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyle-cysteine (NAC) completely blocks ROS generation and, subsequently, abrogates S4 induced apoptosis. Furthermore, in vivo treatment with S4 significantly increases the life span of swiss albino mice bearing sensitive and doxorubicin resistant subline of Ehrlich ascites carcinoma. In addition, intraperitoneal application of S4 in mice does not show any systemic toxicity at concentrations that in preliminary trials in a mice Ehrlich ascites carcinoma model. Therefore, present report provides evidence that S4, a quinoline derivative, may be a promising new therapeutic agent against drug resistant cancers

    Glycosylated extracellular mucin domains protect against SARS-CoV-2 infection at the respiratory surface.

    Get PDF
    Mucins play an essential role in protecting the respiratory tract against microbial infections while also acting as binding sites for bacterial and viral adhesins. The heavily O-glycosylated gel-forming mucins MUC5AC and MUC5B eliminate pathogens by mucociliary clearance. Transmembrane mucins MUC1, MUC4, and MUC16 can restrict microbial invasion at the apical surface of the epithelium. In this study, we determined the impact of host mucins and mucin glycans on epithelial entry of SARS-CoV-2. Human lung epithelial Calu-3 cells express the SARS-CoV-2 entry receptor ACE2 and high levels of glycosylated MUC1, but not MUC4 and MUC16, on their cell surface. The O-glycan-specific mucinase StcE specifically removed the glycosylated part of the MUC1 extracellular domain while leaving the underlying SEA domain and cytoplasmic tail intact. StcE treatment of Calu-3 cells significantly enhanced infection with SARS-CoV-2 pseudovirus and authentic virus, while removal of terminal mucin glycans sialic acid and fucose from the epithelial surface did not impact viral entry. In Calu-3 cells, the transmembrane mucin MUC1 and ACE2 are located to the apical surface in close proximity and StcE treatment results in enhanced binding of purified spike protein. Both MUC1 and MUC16 are expressed on the surface of human organoid-derived air-liquid interface (ALI) differentiated airway cultures and StcE treatment led to mucin removal and increased levels of SARS-CoV-2 replication. In these cultures, MUC1 was highly expressed in non-ciliated cells while MUC16 was enriched in goblet cells. In conclusion, the glycosylated extracellular domains of different transmembrane mucins might have similar protective functions in different respiratory cell types by restricting SARS-CoV-2 binding and entry
    corecore