33 research outputs found
Genetic basis for variation in plasma IL-18 levels in persons with chronic hepatitis C virus and human immunodeficiency virus-1 infections
Inflammasomes are multi-protein complexes integrating pathogen-triggered signaling leading to the generation of pro-inflammatory cytokines including interleukin-18 (IL-18). Hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections are associated with elevated IL-18, suggesting inflammasome activation. However, there is marked person-to-person variation in the inflammasome response to HCV and HIV. We hypothesized that host genetics may explain this variation. To test this, we analyzed the associations of plasma IL-18 levels and polymorphisms in 10 genes in the inflammasome cascade. About 1538 participants with active HIV and/or HCV infection in three ancestry groups are included. Samples were genotyped using the Illumina Omni 1-quad and Omni 2.5 arrays. Linear regression analyses were performed to test the association of variants with log IL-18 including HCV and HIV infection status, and HIV RNA in each ancestry group and then meta-analyzed. Eleven highly correlated single-nucleotide polymorphisms (rΒ²=0.98β1) in the IL-18-BCO2 region were significantly associated with log IL-18; each T allele of rs80011693 confers a decrease of 0.06 log pgβmlβ»ΒΉ of IL-18 after adjusting for covariates (rs80011693; rs111311302 Ξ²=β0.06, P-value=2.7 Γ 10β»β΄). In conclusion, genetic variation in IL-18 is associated with IL-18 production in response to HIV and HCV infection, and may explain variability in the inflammatory outcomes of chronic viral infections
Granulocytes mediates the Fas-L-associated apoptosis during lung metastasis of melanoma that determines the metastatic behaviour
The survival of tumour cells in a new tissue environment is crucial for tumour metastasis. Factors contributing to the death of tumour cells during metastasis are not completely understood. In murine melanoma model, activation of Fas (CD95, APO-1) signal in tumour cells reduces their lung metastasis potential, which may be associated with an induction of apoptosis in tumours. To elucidate the cellular mechanism, we used a Fas-ligand (Fas-L) specific ribozyme (Fas-Lribozyme) to suppress the expression of Fas-L but not Fas or TNF-Ξ± in B16F10 melanoma cells. The Fas-Lribozyme-carrying cells grew slightly faster in vitro with better viability than controls. Suppression of Fas-L in B16F10 melanoma cells by Fas-Lribozyme enhanced lung metastasis of the cells in C57BL/6 mice, and that was correlated with reductions in both apoptotic tumour cells and granulocytic infiltration. Mice depleted of granulocytes, but not CD4+ and CD8+ cells, showed a greatly elevated susceptibility to lung metastasis. Moreover, apoptosis in tumour cells was significantly reduced in granulocyte-depleted mice during the course of tumour formation. Taken together, our findings indicate that Fas-L-associated apoptosis in tumour cells determines the metastasis behaviour of melanoma in the lung and this apoptosis is primarily mediated by the cytotoxicity of recruited granulocytes
Safety and Immunogenicity of an HIV-1 Gag DNA Vaccine with or without IL-12 and/or IL-15 Plasmid Cytokine Adjuvant in Healthy, HIV-1 Uninfected Adults
DNA vaccines are a promising approach to vaccination since they circumvent the problem of vector-induced immunity. DNA plasmid cytokine adjuvants have been shown to augment immune responses in small animals and in macaques.We performed two first in human HIV vaccine trials in the US, Brazil and Thailand of an RNA-optimized truncated HIV-1 gag gene (p37) DNA derived from strain HXB2 administered either alone or in combination with dose-escalation of IL-12 or IL-15 plasmid cytokine adjuvants. Vaccinations with both the HIV immunogen and cytokine adjuvant were generally well-tolerated and no significant vaccine-related adverse events were identified. A small number of subjects developed asymptomatic low titer antibodies to IL-12 or IL-15. Cellular immunogenicity following 3 and 4 vaccinations was poor, with response rates to gag of 4.9%/8.7% among vaccinees receiving gag DNA alone, 0%/11.5% among those receiving gag DNA+IL-15, and no responders among those receiving DNA+high dose (1500 ug) IL-12 DNA. However, after three doses, 44.4% (4/9) of vaccinees receiving gag DNA and intermediate dose (500 ug) of IL-12 DNA demonstrated a detectable cellular immune response.This combination of HIV gag DNA with plasmid cytokine adjuvants was well tolerated. There were minimal responses to HIV gag DNA alone, and no apparent augmentation with either IL-12 or IL-15 plasmid cytokine adjuvants. Despite the promise of DNA vaccines, newer formulations or methods of delivery will be required to increase their immunogenicity.Clinicaltrials.gov NCT00115960 NCT00111605