10 research outputs found
Genomic analysis of Anderson typing phages of Salmonella Typhimrium: towards understanding the basis of bacteria-phage interaction
The Anderson phage typing scheme has been successfully used worldwide for epidemiological surveillance of Salmonella enterica serovar Typhimurium. Although the scheme is being replaced by whole genome sequence subtyping methods, it can provide a valuable model system for study of phage-host interaction. The phage typing scheme distinguishes more than 300 definitive types of Salmonella Typhimurium based on their patterns of lysis to a unique collection of 30 specific Salmonella phages. In this study, we sequenced the genomes of 28 Anderson typing phages of Salmonella Typhimurium to begin to characterize the genetic determinants that are responsible for the differences in these phage type profiles. Genomic analysis of typing phages reveals that Anderson phages can be classified into three different groups, the P22-like, ES18-like and SETP3-like clusters. Most Anderson phages are short tailed P22-like viruses (genus Lederbergvirus); but phages STMP8 and STMP18 are very closely related to the lambdoid long tailed phage ES18, and phages STMP12 and STMP13 are related to the long noncontractile tailed, virulent phage SETP3. Most of these typing phages have complex genome relationships, but interestingly, two phage pairs STMP5 and STMP16 as well as STMP12 and STMP13 differ by a single nucleotide. The former affects a P22-like protein involved in DNA passage through the periplasm during its injection, and the latter affects a gene whose function is unknown. Using the Anderson phage typing scheme would provide insights into phage biology and the development of phage therapy for the treatment of antibiotic resistant bacterial infections
The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans
Open Access via PMC2649417Peer reviewedPublisher PD
Enterohemorrhagic Escherichia coli O157: H7 from healthy dairy cattle in Mid-West Brazil: occurrence and molecular characterization
Enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 represents the major Shiga toxin-producing E. coli (STEC) strain related to large outbreaks and severe diseases such as hemorrhagic colitis (HC) and the potentially lethal hemolytic uremic syndrome (HUS). The aim of this study was to report the occurrence and molecular characterization of O157:H7 isolates obtained by rectal swab from 52 healthy dairy cattle belonging to 21 farms in Mid-West of Brazil. Detection of 16SrRNA, stx1, stx2, rfbO157, fliCh7, eae, ehxA, saa, cnf1, chuA, yjaA and TSPE4.C2 genes was performed by PCR. The isolates were further characterized by serotyping. Two hundred and sixty E. coli isolates were obtained, of which 126 were characterized as STEC. Two isolates from the same cow were identified as serotype O157:H7. Both isolates presented the stx2, eae, ehxA, saa and cnf1 virulence factor genes and the chuA gene in the phylogenetic classification (virulent group D), suggesting that they were clones. The prevalence of O157:H7 was found to be 1.92% (1/52 animals), demonstrating that healthy dairy cattle from farms in the Mid-West of Brazil are an important reservoir for highly pathogenic E. coli O157:H7
Recommended from our members
Description of Kingella potus sp nov., an organism isolated from a wound caused by an animal bite
We report the isolation and characterization of a hitherto unknown gram-negative, rod-shaped Neisseria-like organism from an infected wound resulting from a bite from a kinkajou. Based on both phenotypic and phylogenetic evidence, it is proposed that the unknown organism be classified as a new species, Kingella potus sp. nov
Investigating the link between the presence of enteroaggregative Escherichia coli and infectious intestinal disease in the United kingdom, 1993 to 1996 and 2008 to 2009
10.2807/1560-7917.ES2013.18.37.20582Eurosurveillance183