353 research outputs found

    Laser-induced electron emission from a tungsten nanotip: identifying above threshold photoemission using energy-resolved laser power dependencies

    Full text link
    We present an experiment studying the interaction of a strongly focused 25 fs laser pulse with a tungsten nanotip, investigating the different regimes of laser-induced electron emission. We study the dependence of the electron yield with respect to the static electric field applied to the tip. Photoelectron spectra are recorded using a retarding field spectrometer and peaks separated by the photon energy are observed with a 45 % contrast. They are a clear signature of above threshold photoemission (ATP), and are confirmed by extensive spectrally resolved studies of the laser power dependence. Understanding these mechanisms opens the route to control experiment in the strong-field regime on nanoscale objects.Comment: 9 pages, 6 figure

    The prediction of the operating conditions on the permeate flux and on protein aggregation during membrane processing of monoclonal antibodies

    Get PDF
    The lack of available material during early stage bioprocess development poses numerous processing challenges such as limiting the number of full-scale experiments. Extended fundamental process understanding could be gained with the use of an ultra scale-down (USD) device using as little as 1.7 mL per experimental run. The USD system is used to predict diafiltration and ultrafiltration/diafiltration (UF/DF) performance of a pilot-scale tangential flow filtration (TFF) system, fitted with a flat-sheet cassette, operating at 500-fold larger scale. Both systems were designed by maintaining a volumetric loading of 8.1 L of feed per m2. Permeate flux was predicted for monoclonal antibody solutions with the USD system across a range of transmembrane pressure drops, feed concentrations and flow conditions during diafiltration, and desired retentate concentrations during UF/DF operations. The resulting USD data were in good agreement with the pilot-scale TFF when scaled based on similar shear rates over the membrane surface. Little change in soluble aggregates was observed in both systems but there were significantly higher increases in product turbidity in the USD system. A correlation was established to relate turbidity increase based on the volume fraction of high shear stress zone for USD systems and various pilot-scale TFF systems. The correlation was extended to encompass the processing time and concentration for a wide range of membrane processing challenges in both scales

    Unbiasing the density of TTV-characterised sub-Neptunes: Update of the mass-radius relationship of 34 Kepler planets

    Full text link
    Transit Timing Variations (TTVs) can provide useful information on compact multi-planetary systems observed by transits, by putting constraints on the masses and eccentricities of the observed planets. This is especially helpful when the host star is not bright enough for radial velocity follow-up. However, in the past decades, numerous works have shown that TTV-characterised planets tend to have a lower densities than RV-characterised planets. Re-analysing 34 Kepler planets in the super-Earth to sub-Neptunes range using the RIVERS approach, we show that at least part of these discrepancies was due to the way transit timings were extracted from the light curve, which had a tendency to under-estimate the TTV amplitudes. We recover robust mass estimates (i.e. low prior dependency) for 23 of the planets. We compare these planets the RV-characterised population. A large fraction of these previously had a surprisingly low density now occupy a place of the mass-radius diagram much closer to the bulk of the known planets, although a slight shift toward lower densities remains, which could indicate that the compact multi-planetary systems characterised by TTVs are indeed composed of planets which are different from the bulk of the RV-characterised population. These results are especially important for obtaining an unbiased view of the compact multi-planetary systems detected by Kepler, TESS, and the upcoming PLATO mission

    The Non--Ergodicity Threshold: Time Scale for Magnetic Reversal

    Full text link
    We prove the existence of a non-ergodicity threshold for an anisotropic classical Heisenberg model with all-to-all couplings. Below the threshold, the energy surface is disconnected in two components with positive and negative magnetizations respectively. Above, in a fully chaotic regime, magnetization changes sign in a stochastic way and its behavior can be fully characterized by an average magnetization reversal time. We show that statistical mechanics predicts a phase--transition at an energy higher than the non-ergodicity threshold. We assess the dynamical relevance of the latter for finite systems through numerical simulations and analytical calculations. In particular, the time scale for magnetic reversal diverges as a power law at the ergodicity threshold with a size-dependent exponent, which could be a signature of the phenomenon.Comment: 4 pages 4 figure

    Associahedra via spines

    Full text link
    An associahedron is a polytope whose vertices correspond to triangulations of a convex polygon and whose edges correspond to flips between them. Using labeled polygons, C. Hohlweg and C. Lange constructed various realizations of the associahedron with relevant properties related to the symmetric group and the classical permutahedron. We introduce the spine of a triangulation as its dual tree together with a labeling and an orientation. This notion extends the classical understanding of the associahedron via binary trees, introduces a new perspective on C. Hohlweg and C. Lange's construction closer to J.-L. Loday's original approach, and sheds light upon the combinatorial and geometric properties of the resulting realizations of the associahedron. It also leads to noteworthy proofs which shorten and simplify previous approaches.Comment: 27 pages, 11 figures. Version 5: minor correction

    Formation and interactions of cold and ultracold molecules: new challenges for interdisciplinary physics

    Full text link
    Progress on researches in the field of molecules at cold and ultracold temperatures is reported in this review. It covers extensively the experimental methods to produce, detect and characterize cold and ultracold molecules including association of ultracold atoms, deceleration by external fields and kinematic cooling. Confinement of molecules in different kinds of traps is also discussed. The basic theoretical issues related to the knowledge of the molecular structure, the atom-molecule and molecule-molecule mutual interactions, and to their possible manipulation and control with external fields, are reviewed. A short discussion on the broad area of applications completes the review.Comment: to appear in Reports on Progress in Physic

    BRSMG Curinga: cultivar de arroz de terras altas de ampla adaptação para o Brasil.

    Get PDF
    O objetivo deste trabalho é a apresentação das características da BRSMG Curinga, a sétima cultivar de arroz de terras altas originåria da colaboração da Embrapa com o programa CIAT/CIRAD, lançada em 2005 para cultivo em condiçÔes de terras altas nos Estados de Minas Gerais, Goiås, Mato Grosso, RondÎnia, Parå, Roraima, Maranhão, Piauí e Tocantins.bitstream/CNPAF/23577/1/comt_114.pd
    • 

    corecore