5,827 research outputs found
Pseudocraters on Mars
The morphology and origin of the Martian volcanic-dome like structures are compared to the terrestial pseudocraters
Randomly Broken Nuclei and Disordered Systems
Similarities between models of fragmenting nuclei and disordered systems in
condensed matter suggest corresponding methods. Several theoretical models of
fragmentation investigated in this fashion show marked differences, indicating
possible new methods for distinguishing models using yield data. Applying
nuclear methods to disordered systems also yields interesting results.Comment: 10 pages, 4 figure
Gravitationally Collapsing Shells in (2+1) Dimensions
We study gravitationally collapsing models of pressureless dust, fluids with
pressure, and the generalized Chaplygin gas (GCG) shell in (2+1)-dimensional
spacetimes. Various collapse scenarios are investigated under a variety of the
background configurations such as anti-de Sitter(AdS) black hole, de Sitter
(dS) space, flat and AdS space with a conical deficit. As with the case of a
disk of dust, we find that the collapse of a dust shell coincides with the
Oppenheimer-Snyder type collapse to a black hole provided the initial density
is sufficiently large. We also find -- for all types of shell -- that collapse
to a naked singularity is possible under a broad variety of initial conditions.
For shells with pressure this singularity can occur for a finite radius of the
shell. We also find that GCG shells exhibit diverse collapse scenarios, which
can be easily demonstrated by an effective potential analysis.Comment: 27 pages, Latex, 11 figures, typos corrected, references added, minor
amendments in introduction and conclusion introd
Studies in the statistical and thermal properties of hadronic matter under some extreme conditions
The thermal and statistical properties of hadronic matter under some extreme
conditions are investigated using an exactly solvable canonical ensemble model.
A unified model describing both the fragmentation of nuclei and the thermal
properties of hadronic matter is developed. Simple expressions are obtained for
quantities such as the hadronic equation of state, specific heat,
compressibility, entropy, and excitation energy as a function of temperature
and density. These expressions encompass the fermionic aspect of nucleons, such
as degeneracy pressure and Fermi energy at low temperatures and the ideal gas
laws at high temperatures and low density. Expressions are developed which
connect these two extremes with behavior that resembles an ideal Bose gas with
its associated Bose condensation. In the thermodynamic limit, an infinite
cluster exists below a certain critical condition in a manner similar to the
sudden appearance of the infinite cluster in percolation theory. The importance
of multiplicity fluctuations is discussed and some recent data from the EOS
collaboration on critical point behavior of nuclei can be accounted for using
simple expressions obtained from the model.Comment: 22 pages, revtex, includes 6 figures, submitted to Phys. Rev.
The heats of formation of the haloacetylenes XCCY [X, Y = H, F, Cl]: basis set limit ab initio results and thermochemical analysis
The heats of formation of haloacetylenes are evaluated using the recent W1
and W2 ab initio computational thermochemistry methods. These calculations
involve CCSD and CCSD(T) coupled cluster methods, basis sets of up to spdfgh
quality, extrapolations to the one-particle basis set limit, and contributions
of inner-shell correlation, scalar relativistic effects, and (where relevant)
first-order spin-orbit coupling. The heats of formation determined using W2
theory are: \hof(HCCH) = 54.48 kcal/mol, \hof(HCCF) = 25.15 kcal/mol,
\hof(FCCF) = 1.38 kcal/mol, \hof(HCCCl) = 54.83 kcal/mol, \hof(ClCCCl) = 56.21
kcal/mol, and \hof(FCCCl) = 28.47 kcal/mol. Enthalpies of hydrogenation and
destabilization energies relative to acetylene were obtained at the W1 level of
theory. So doing we find the following destabilization order for acetylenes:
FCCF ClCCF HCCF ClCCCl HCCCl HCCH. By a combination of W1
theory and isodesmic reactions, we show that the generally accepted heat of
formation of 1,2-dichloroethane should be revised to -31.80.6 kcal/mol, in
excellent agreement with a very recent critically evaluated review. The
performance of compound thermochemistry schemes such as G2, G3, G3X and CBS-QB3
theories has been analyzed.Comment: Mol. Phys., in press (E. R. Davidson issue
Canonical and Microcanonical Distributions for Fermi Systems
Recursion relations are presented that allow exact calculation of canonical
and microcanonical partition functions of degenerate Fermi systems, assuming no
explicit two-body interactions. Calculations of the level density, sorted by
angular momentum, are presented for Ni-56 are presented. The issue of treating
unbound states is also addressed.Comment: 5 pages, 5 figure
- …