301 research outputs found

    Tropomyosin Flexural Rigidity and Single Ca2+ Regulatory Unit Dynamics: Implications for Cooperative Regulation of Cardiac Muscle Contraction and Cardiomyocyte Hypertrophy

    Get PDF
    Striated muscle contraction is regulated by dynamic and cooperative interactions among Ca2+, troponin, and tropomyosin on the thin filament. While Ca2+ regulation has been extensively studied, little is known about the dynamics of individual regulatory units and structural changes of individual tropomyosin molecules in relation to their mechanical properties, and how these factors are altered by cardiomyopathy mutations in the Ca2+ regulatory proteins. In this hypothesis paper, we explore how various experimental and analytical approaches could broaden our understanding of the cooperative regulation of cardiac contraction in health and disease

    Persistence Length of Human Cardiac α-Tropomyosin Measured by Single Molecule Direct Probe Microscopy

    Get PDF
    α-Tropomyosin (αTm) is the predominant tropomyosin isoform in adult human heart and constitutes a major component in Ca2+-regulated systolic contraction of cardiac muscle. We present here the first direct probe images of WT human cardiac αTm by atomic force microscopy, and quantify its mechanical flexibility with three independent analysis methods. Single molecules of bacterially-expressed human cardiac αTm were imaged on poly-lysine coated mica and their contours were analyzed. Analysis of tangent-angle (θ(s)) correlation along molecular contours, second moment of tangent angles (<θ2(s)>), and end-to-end length (Le-e) distributions respectively yielded values of persistence length (Lp) of 41–46 nm, 40–45 nm, and 42–52 nm, corresponding to 1–1.3 molecular contour lengths (Lc). We also demonstrate that a sufficiently large population, with at least 100 molecules, is required for a reliable Lp measurement of αTm in single molecule studies. Our estimate that Lp for αTm is only slightly longer than Lc is consistent with a previous study showing there is little spread of cooperative activation into near-neighbor regulatory units of cardiac thin filaments. The Lp determined here for human cardiac αTm perhaps represents an evolutionarily tuned optimum between Ca2+ sensitivity and cooperativity in cardiac thin filaments and likely constitutes an essential parameter for normal function in the human heart

    Effect of Viscosity on Mechanics of Single, Skinned Fibers from Rabbit Psoas Muscle

    Get PDF
    AbstractMuscle contraction is highly dynamic and thus may be influenced by viscosity of the medium surrounding the myofilaments. Single, skinned fibers from rabbit psoas muscle were used to test this hypothesis. Viscosity within the myofilament lattice was increased by adding to solutions low molecular weight sugars (disaccharides sucrose or maltose or monosaccharides glucose or fructose). At maximal Ca2+ activation, isometric force (Fi) was inhibited at the highest solute concentrations studied, but this inhibition was not directly related to viscosity. Solutes readily permeated the filament lattice, as fiber diameter was unaffected by added solutes (except for an increased diameter with Fi<30% of control). In contrast, there was a linear dependence upon 1/viscosity for both unloaded shortening velocity and also the kinetics of isometric tension redevelopment; these effects were unrelated to either variation in solution osmolarity or inhibition of force. All effects of added solute were reversible. Inhibition of both isometric as well as isotonic kinetics demonstrates that viscous resistance to filament sliding was not the predominant factor affected by viscosity. This was corroborated by measurements in relaxed fibers, which showed no significant change in the strain-rate dependence of elastic modulus when viscosity was increased more than twofold. Our results implicate cross-bridge diffusion as a significant limiting factor in cross-bridge kinetics and, more generally, demonstrate that viscosity is a useful probe of actomyosin dynamics

    Micromechanical Thermal Assays of Ca2+-Regulated Thin-Filament Function and Modulation by Hypertrophic Cardiomyopathy Mutants of Human Cardiac Troponin

    Get PDF
    Microfabricated thermoelectric controllers can be employed to investigate mechanisms underlying myosin-driven sliding of Ca2+-regulated actin and disease-associated mutations in myofilament proteins. Specifically, we examined actin filament sliding—with or without human cardiac troponin (Tn) and α-tropomyosin (Tm)—propelled by rabbit skeletal heavy meromyosin, when temperature was varied continuously over a wide range (∼20–63°C). At the upper end of this temperature range, reversible dysregulation of thin filaments occurred at pCa 9 and 5; actomyosin function was unaffected. Tn-Tm enhanced sliding speed at pCa 5 and increased a transition temperature (Tt) between a high activation energy (Ea) but low temperature regime and a low Ea but high temperature regime. This was modulated by factors that alter cross-bridge number and kinetics. Three familial hypertrophic cardiomyopathy (FHC) mutations, cTnI R145G, cTnI K206Q, and cTnT R278C, cause dysregulation at temperatures ∼5–8°C lower; the latter two increased speed at pCa 5 at all temperatures

    Detection of Target ssDNA Using a Microfabricated Hall Magnetometer with Correlated Optical Readout

    Get PDF
    Sensing biological agents at the genomic level, while enhancing the response time for biodetection over commonly used, optics-based techniques such as nucleic acid microarrays or enzyme-linked immunosorbent assays (ELISAs), is an important criterion for new biosensors. Here, we describe the successful detection of a 35-base, single-strand nucleic acid target by Hall-based magnetic transduction as a mimic for pathogenic DNA target detection. The detection platform has low background, large signal amplification following target binding and can discriminate a single, 350 nm superparamagnetic bead labeled with DNA. Detection of the target sequence was demonstrated at 364 pM (<2 target DNA strands per bead) target DNA in the presence of 36 μM nontarget (noncomplementary) DNA (<10 ppm target DNA) using optical microscopy detection on a GaAs Hall mimic. The use of Hall magnetometers as magnetic transduction biosensors holds promise for multiplexing applications that can greatly improve point-of-care (POC) diagnostics and subsequent medical care

    Inferring Ecological Processes from Taxonomic, Phylogenetic and Functional Trait β-Diversity

    Get PDF
    Understanding the influences of dispersal limitation and environmental filtering on the structure of ecological communities is a major challenge in ecology. Insight may be gained by combining phylogenetic, functional and taxonomic data to characterize spatial turnover in community structure (β-diversity). We develop a framework that allows rigorous inference of the strengths of dispersal limitation and environmental filtering by combining these three types of β-diversity. Our framework provides model-generated expectations for patterns of taxonomic, phylogenetic and functional β-diversity across biologically relevant combinations of dispersal limitation and environmental filtering. After developing the framework we compared the model-generated expectations to the commonly used “intuitive” expectation that the variance explained by the environment or by space will, respectively, increase monotonically with the strength of environmental filtering or dispersal limitation. The model-generated expectations strongly departed from these intuitive expectations: the variance explained by the environment or by space was often a unimodal function of the strength of environmental filtering or dispersal limitation, respectively. Therefore, although it is commonly done in the literature, one cannot assume that the strength of an underlying process is a monotonic function of explained variance. To infer the strength of underlying processes, one must instead compare explained variances to model-generated expectations. Our framework provides these expectations. We show that by combining the three types of β-diversity with model-generated expectations our framework is able to provide rigorous inferences of the relative and absolute strengths of dispersal limitation and environmental filtering. Phylogenetic, functional and taxonomic β-diversity can therefore be used simultaneously to infer processes by comparing their empirical patterns to the expectations generated by frameworks similar to the one developed here
    corecore