26 research outputs found

    Exploring the relationship between exposure to technological and gastrointestinal stress and probiotic functional properties of lactobacilli and bifidobacteria

    No full text
    Strains of Lactobacillus and Bifidobacterium are considered probiotic because of their associated potential health benefits. Probiotics are commonly administered orally via incorporation into food products. Microorganisms for use as probiotics encounter stress conditions, which include acid, bile, osmotic, oxidative, heat and cold stresses. These can occur during processing and storage, and during passage through the gastrointestinal tract, and can affect viability. Probiotic bacteria have to remain viable in order to confer any health benefits. Therefore, the ability to withstand technological and gastrointestinal stresses are crucial probiotic selection criteria. Whilst the stress tolerance mechanisms of lactobacilli and bifidobacteria are largely understood, the impact of exposure to stressful conditions on the functional properties of surviving probiotic microorganisms is not clear. This review explores the potentially positive and negative relationships between exposure to stress conditions and probiotic functional properties such as resistance to gastric acid and bile, adhesion and colonization potential, and tolerance to antibiotics. Protective strategies can be employed to combat negative effects of stress on functional properties. However, further research is needed to ascertain synergistic relationships between exposure to stress and probiotic properties.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Adherence And Colonization Properties Of Lactobacillus Rhamnosus Tb1, A Broiler Chicken Isolate

    Full text link
    Aims: Selected lactic acid bacteria (LAB) isolated from intestinal tract of chicken have been studied in order to investigate their ability to adhere in vitro to Basement Membrane Matrigel (BMM). A selected strain showing a good adherence in BMM test was used for in vivo colonization assays. Methods and Results: In vitro assessment of adhesion of broiler chicken isolates was performed using BMM assay. Among LAB strains tested, Lactobacillus rhamnosus TB1 showed a good adherence that was comparable to the one of an Escherichia coli EPEC strain used as positive control. For in vivo colonization assays this strain was fluorescently stained with the carboxyfluorescein diacetate succinimidyl ester (cFDA-SE) thus allowing its detection in different layers of intestinal tract after inoculation in broiler chicken. Further, stained L. rhamnosus were found with a highest value in rectum, jejunum and ileum both 3 and 24 h after administration. Conclusions: BMM assay is a quick method to test in vitro adhesion properties of bacterial strains and cFDASE- stained bacteria may be considered as an alternative method to test in vivo adhesion and colonization properties. Significance and Impact of the Study: Lactobacillus rhamnosus TB1 was therefore showed to be able to adhere strongly in vitro to BMM and in vivo to intestinal epithelial cells of chicken and may be considered as a potential probiotic for chicken
    corecore