62 research outputs found

    The LHC Dipole Geometry as Built in Industry

    Get PDF
    The LHC dipoles magnets are produced in 5 industrial production sites in Europe. The production is well underway and more than half of the total quantity has been delivered to CERN. One of the important characteristics of the dipole magnets is their geometry. To achieve the requested mechanical tolerances on the magnets, which are 15 m long and have a 28 t mass, the final assembly operations includes precise optical measurements. To ensure the good quality and high production rate, the final assembly procedure has been automated as much as possible. The authors report here about the assembly procedure, the features of the software that guides the optical measurements (and consequently the assembly operations) and the results obtained on the geometry in the different sites

    Guidelines on assessing biodiverse foods in dietary intake surveys

    Get PDF
    FAO produced these guidelines in collaboration with Bioversity International with the aim of facilitating the work of researchers who wish to capture biodiversity aspects (appropriate levels of taxonomic identification of foods) incommonly used dietary surveys, including 24-hour recall, food records, food frequency questionnaires (FFQ) and dietary diversity surveys. For the sake of simplicity, these guidelines focus on plant foods, which is where the expertise of Bioversity International lies, but similar principles could be applied to animal foods, insects, fish and other aquatic species, with the support of appropriate experts. The guidelines are intended as a practical tool, and describe the preparatory steps involved in assessing and documenting local foods, with appropriate levels of detail in taxonomic identification.This is followed by suggestions on how to adapt dietary assessment instruments to collect information on biodiverse foods

    Performance of the Superconducting Corrector Magnet Circuits during the Commissioning of the LHC

    Get PDF
    The LHC is a complex machine requiring more than 7400 superconducting corrector magnets distributed along a circumference of 26.7 km. These magnets are powered in 1446 different electrical circuits at currents ranging from 60 A up to 600 A. Among the corrector circuits the 600 A corrector magnets form the most diverse and differentiated group. All together, about 60000 high current connections had to be made. A fault in a circuit or one of the superconducting connections would have severe consequences for the accelerator operation. All magnets are wound from various types of Nb-Ti superconducting strands, and many contain parallel protection resistors to by-pass the current still flowing in the other magnets of the same circuit when they quench. In this paper the performance of these magnet circuits is presented, focussing on the quench behaviour of the magnets. Quench detection and the performance of the electrical interconnects will be dealt with. The results as measured on the entire circuits are compared to the test results obtained at the reception of the individual magnets

    FIRST RESULTS OF AN EXPERIMENT ON ADVANCED COLLIMATOR MATERIALS AT CERN HIRADMAT FACILITY

    Get PDF
    A comprehensive, first-of-its-kind experiment (HRMT-14) has been recently carried out at CERN HiRadMat facility on six different materials of interest for Beam Intercepting Devices (collimators, targets, dumps). Both traditional materials (Mo, W and Cu alloys) as well as advanced metal/diamond and metal/graphite composites were tested under extreme conditions as to pressure, density and temperature, leading to the development of highly dynamic phenomena as shock-waves, spallation, explosions. Experimental data were acquired, mostly in real time, relying on extensive integrated instrumentation (strain gauges, temperature and vacuum sensors) and on remote acquisition devices (laser Doppler vibrometer and high-speed camera). The experiment was a success under all points of view in spite of the technological challenges and harsh environment. First measurements are in good agreement with results of complex simulations, confirming the effectiveness of the acquisition system and the reliability of advanced numerical methods when material constitutive models are completely available. Valuable information has been collected as to thermalshock robustness of tested materials

    Dipole Magnet Splice Resistance from SM18 Data

    No full text
    After the Chamonix meeting of January 2009, a working group has been formed to look back at the provoked quench data in SM18 tests and try to find indications for bad splices. It was also decided to study only the main dipole magnets. Two methods have been combined for splice analysis with SM18 data: best-fit and offset compensation. These analysis methods and the results obtained are described in this report

    Mitigation of ground motion effects in linear accelerators via feed-forward control

    Get PDF
    International audienceGround motion is a severe problem for many particle accelerators, since it excites beam oscillations, which decrease the beam quality and create beam-beam offset (at colliders). Orbit feedback systems can only compensate ground motion effects at frequencies significantly smaller than the beam repetition rate. In linear colliders, where the repetition rate is low, additional counter measures have to be put in place. For this reason, a ground motion mitigation method based on feed-forward control is presented in this paper. It has several advantages compared to other techniques (stabilization systems and intratrain feedback systems) such as cost reduction and potential performance improvement. An analytical model is presented that allows the derivation of hardware specification and performance estimates for a specific accelerator and ground motion model. At the Accelerator Test Facility (ATF2), ground motion sensors have been installed to verify the feasibility of important parts of the mitigation strategy. In experimental studies, it has been shown that beam excitations due to ground motion can be predicted from ground motion measurements on a pulse-to-pulse basis. Correlations of up to 80% between the estimated and measured orbit jitter have been observed. Additionally, an orbit jitter source was identified and has been removed, which halved the orbit jitter power at ATF2 and shows that the feed-forward scheme is also very useful for the detection of installation issues. We believe that the presented mitigation method has the potential to reduce costs and improve the performance of linear colliders and potentially other linear accelerators
    • …
    corecore