236 research outputs found

    Non-Hermitian wave packet approximation for coupled two-level systems in weak and intense fields

    Full text link
    We introduce an accurate non-Hermitian Schr\"odinger-type approximation of Bloch optical equations for two-level systems. This approximation provides a complete description of the excitation, relaxation and decoherence dynamics in both weak and strong laser fields. In this approach, it is sufficient to propagate the wave function of the quantum system instead of the density matrix, providing that relaxation and dephasing are taken into account via automatically-adjusted time-dependent gain and decay rates. The developed formalism is applied to the problem of scattering and absorption of electromagnetic radiation by a thin layer comprised of interacting two-level emitters

    Bell-type inequalities for cold heteronuclear molecules

    Get PDF
    We introduce Bell-type inequalities allowing for non-locality and entanglement tests with two cold heteronuclear molecules. The proposed inequalities are based on correlations between each molecule spatial orientation, an observable which can be experimentally measured with present day technology. Orientation measurements are performed on each subsystem at diferent times. These times play the role of the polarizer angles in Bell tests realized with photons. We discuss the experimental implementations of the proposed tests, which could also be adapted to other high dimensional quantum angular momenta systems.Comment: 4 page

    Theory of Dipole Induced Electromagnetic Transparency

    Full text link
    A detailed theory describing linear optics of vapors comprised of interacting multi-level quantum emitters is proposed. It is shown both by direct integration of Maxwell-Bloch equations and using a simple analytical model that at large densities narrow transparency windows appear in otherwise completely opaque spectra. The existence of such windows is attributed to overlapping resonances. This effect, first introduced for three-level systems in [R. Puthumpally-Joseph, M. Sukharev, O. Atabek and E. Charron, Phys. Rev. Lett. 113, 163603 (2014)], is due to strongly enhanced dipole-dipole interactions at high emitters' densities. The presented theory extends this effect to the case of multilevel systems. The theory is applied to the D1 transitions of interacting Rb-85 atoms. It is shown that at high atomic densities, Rb-85 atoms can behave as three-level emitters exhibiting all the properties of dipole induced electromagnetic transparency. Applications including slow light and laser pulse shaping are also proposed

    Dipole-Induced Electromagnetic Transparency

    Full text link
    We determine the optical response of a thin and dense layer of interacting quantum emitters. We show that in such a dense system, the Lorentz redshift and the associated interaction broadening can be used to control the transmission and reflection spectra. In the presence of overlapping resonances, a Dipole-Induced Electromagnetic Transparency (DIET) regime, similar to Electromagnetically Induced Transparency (EIT), may be achieved. DIET relies on destructive interference between the electromagnetic waves emitted by quantum emitters. Carefully tuning material parameters allows to achieve narrow transmission windows in otherwise completely opaque media. We analyze in details this coherent and collective effect using a generalized Lorentz model and show how it can be controlled. Several potential applications of the phenomenon, such as slow light, are proposed

    H2_2 Double Ionization with Few-Cycle Laser Pulses

    Get PDF
    International audienceThe temporal dynamics of double ionization of H2_2 has been investigated both experimentally and theoretically with few-cycle laser pulses. The main observables are the proton spectra associated to the H+^+ + H+^+ fragmentation channel. The model is based on the time-dependent Schrödinger equation and treats on the same level the electronic and nuclear coordinates. Therefore it allows to follow the ultrafast nuclear dynamics as a function of the laser pulse duration, carrier-envelope phase offset and peak intensity. We mainly report results in the sequential double ionization regime above 2 x 1014^{14} W/cm2^{-2}. The proton spectra are shifted to higher energies as the pulse duration is reduced from 40fs down to 10fs. The good agreement between the model predictions and the experimental data at 10fs permits a theoretical study with pulse durations down to a few femtoseconds. We demonstrate the very fast nuclear dynamics of the H2+_2^+ ion for a pulse duration as short as 1fs between the two ionization events giving respectively H2+_2^+ from H2_2 and H+^+ + H+^+ from H2+_2^+. Carrier-envelope phase offset only plays a significant role for pulse durations shorter than 4fs. At 10fs, the laser intensity dependence of the proton spectra is fairly well reproduced by the model

    Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    Full text link
    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood needs vigorous actuation, and may also serve as integrated transducers for acoustical vortices. Since these waves are essential to fine acoustical tweezing, swirling SAW may become the cornerstone of future micrometric devices for contactless manipulation

    Ultrafast electro-nuclear dynamics of H2 double ionization

    Get PDF
    The ultrafast electronic and nuclear dynamics of H2 laser-induced double ionization is studied using a time-dependent wave packet approach that goes beyond the fixed nuclei approximation. The double ionization pathways are analyzed by following the evolution of the total wave function during and after the pulse. The rescattering of the first ionized electron produces a coherent superposition of excited molecular states which presents a pronounced transient H+H- character. This attosecond excitation is followed by field-induced double ionization and by the formation of short-lived autoionizing states which decay via double ionization. These two double ionization mechanisms may be identified by their signature imprinted in the kinetic-energy distribution of the ejected protons

    Optical Devices for Cold Atoms and Bose-Einstein Condensates

    Get PDF
    The manipulation of cold atoms with optical fields is a very promising technique for a variety of applications ranging from laser cooling and trapping to coherent atom transport and matter wave interferometry. Optical fields have also been proposed as interesting tools for quantum information processing with cold atoms. In this paper, we present a theoretical study of the dynamics of a cold 87Rb atomic cloud falling in the gravity field in the presence of two crossing dipole guides. The cloud is either deflected or split between the two branches of this guide. We explore the possibilities of optimization of this device and present preliminary results obtained in the case of zero-temperature dilute Bose-Einstein condensates.Comment: Proceedings of the International Spectroscopy Conference ISC-2007, Sousse, Tunisi
    corecore