9 research outputs found

    Visualizing the 3D Architecture of Multiple Erythrocytes Infected with Plasmodium at Nanoscale by Focused Ion Beam-Scanning Electron Microscopy

    Get PDF
    Different methods for three-dimensional visualization of biological structures have been developed and extensively applied by different research groups. In the field of electron microscopy, a new technique that has emerged is the use of a focused ion beam and scanning electron microscopy for 3D reconstruction at nanoscale resolution. The higher extent of volume that can be reconstructed with this instrument represent one of the main benefits of this technique, which can provide statistically relevant 3D morphometrical data. As the life cycle of Plasmodium species is a process that involves several structurally complex developmental stages that are responsible for a series of modifications in the erythrocyte surface and cytoplasm, a high number of features within the parasites and the host cells has to be sampled for the correct interpretation of their 3D organization. Here, we used FIB-SEM to visualize the 3D architecture of multiple erythrocytes infected with Plasmodium chabaudi and analyzed their morphometrical parameters in a 3D space. We analyzed and quantified alterations on the host cells, such as the variety of shapes and sizes of their membrane profiles and parasite internal structures such as a polymorphic organization of hemoglobin-filled tubules. The results show the complex 3D organization of Plasmodium and infected erythrocyte, and demonstrate the contribution of FIB-SEM for the obtainment of statistical data for an accurate interpretation of complex biological structures

    Apicomplexa in mammalian cells: trafficking to the parasitophorous vacuole.

    No full text
    Most Apicomplexa reside and multiply in the cytoplasm of their host cell, within a parasitophorous vacuole (PV) originating from both parasite and host cell components. Trafficking of parasite-encoded proteins destined to membrane compartments beyond the confine of the parasite plasma membrane is a process that offers a rich territory to explore novel mechanisms of protein-membrane interactions. Here, we focus on the PVs formed by the asexual stages of two pathogens of medical importance, Plasmodium and Toxoplasma. We compare the PVs of both parasites, with a particular emphasis on their evolutionary divergent compartmentalization within the host cell. We also discuss the existence of peculiar export mechanisms and/or sorting determinants that are potentially involved in the post-secretory targeting of parasite proteins to the PV subcompartments

    Infectious Diseases: Need for Targeted Drug Delivery

    No full text

    Malaria parasite proteins that remodel the host erythrocyte

    No full text
    corecore