12 research outputs found

    Foxh1/Nodal Defines Context-Specific Direct Maternal Wnt/β-Catenin Target Gene Regulation in Early Development

    Get PDF
    We thank Jessica Cheung (UC Irvine) and Yvonne Turnbull (University of Aberdeen) for technical and management support; Gert Jan Veenstra (Radboud University, Nijmegen) for discussion; and Adam Lynch and Victor Velecela (University of Aberdeen), for comments on the manuscript. We also thank Professor Masanori Taira (University of Tokyo, currently Chuo University) and Dr Norihiro Sudou (Nara Institute of Science and Technology, currently Tokyo Women's Medical University) for the siamois antibody; and Professor Dan Kessler (University of Pennsylvania) for siamois constructs. This research was supported by the Biotechnology and Biological Sciences Research Council (BBSRC) in the United Kingdom (BB/M001695/1) and by NIH in the United States (NIH GM126395). SH additionally acknowledges personal funding support as a Royal Society/Leverhulme Trust Senior Research Fellow (SRF\R1\191017).Peer reviewedPublisher PD

    Electroporation and in vitro culture of early rabbit embryos.

    No full text
    The functional interrogation of factors underlying early mammalian development is necessary for the understanding and amelioration of human health conditions. The associated article [1] reports on the molecular characterization of markers of neural crest cells in gastrula and neurula stage rabbit embryos. This article presents survival data of rabbit embryos cultured in vitro, as well as immunofluorescence data for molecular markers of neural crest cells following approximately 24-h of culture. Lastly, towards the functional analysis of early neural crest and other developmental genes, this article provides data on the introduction of exogenous DNA into early stage rabbit embryos using electroporation

    Foxh1 Occupies cis -Regulatory Modules Prior to Dynamic Transcription Factor Interactions Controlling the Mesendoderm Gene Program

    No full text
    The interplay between transcription factors and chromatin dictates gene regulatory network activity. Germ layer specification is tightly coupled with zygotic gene activation and, in most metazoans, is dependent upon maternal factors. We explore the dynamic genome-wide interactions of Foxh1, a maternal transcription factor that mediates Nodal/TGF-β signaling, with cis-regulatory modules (CRMs) during mesendodermal specification. Foxh1 marks CRMs during cleavage stages and recruits the co-repressor Tle/Groucho in the early blastula. We highlight a population of CRMs that are continuously occupied by Foxh1 and show that they are marked by H3K4me1, Ep300, and Fox/Sox/Smad motifs, suggesting interplay between these factors in gene regulation. We also propose a molecular "hand-off" between maternal Foxh1 and zygotic Foxa at these CRMs to maintain enhancer activation. Our findings suggest that Foxh1 functions at the top of a hierarchy of interactions by marking developmental genes for activation, beginning with the onset of zygotic gene expression
    corecore