9 research outputs found

    Hypertension in the Pediatric Kidney Transplant Recipient.

    Get PDF
    Hypertension after kidney transplant is a frequent occurrence in pediatric patients. It is a risk factor for graft loss and contributes to the significant burden of cardiovascular disease (CVD) in this population. The etiology of posttransplant hypertension is multifactorial including donor factors, recipient factors, medications, and lifestyle factors similar to those prevalent in the general population. Ambulatory blood pressure monitoring has emerged as the most reliable method for measuring hypertension in pediatric transplant recipients, and many consider it to be essential in the care of these patients. Recent technological advances including measurement of carotid intima-media thickness, pulse wave velocity, and myocardial strain using specked echocardiography and cardiac magnetic resonance imaging have improved our ability to assess CVD burden. Since hypertension remains underrecognized and inadequately treated, an early diagnosis and an appropriate control should be the focus of therapy to help improve patient and graft survival

    Hypertension in the Pediatric Kidney Transplant Recipient

    Get PDF
    Hypertension after kidney transplant is a frequent occurrence in pediatric patients. It is a risk factor for graft loss and contributes to the significant burden of cardiovascular disease (CVD) in this population. The etiology of posttransplant hypertension is multifactorial including donor factors, recipient factors, medications, and lifestyle factors similar to those prevalent in the general population. Ambulatory blood pressure monitoring has emerged as the most reliable method for measuring hypertension in pediatric transplant recipients, and many consider it to be essential in the care of these patients. Recent technological advances including measurement of carotid intima-media thickness, pulse wave velocity, and myocardial strain using specked echocardiography and cardiac magnetic resonance imaging have improved our ability to assess CVD burden. Since hypertension remains underrecognized and inadequately treated, an early diagnosis and an appropriate control should be the focus of therapy to help improve patient and graft survival

    Outcomes of SOT Recipients With COVID-19 in Different Eras of COVID-19 Therapeutics.

    No full text
    BACKGROUND: Few reports have focused on newer coronavirus disease 2019 (COVID-19) therapies (remdesivir, dexamethasone, and convalescent plasma) in solid organ transplant recipients; concerns had been raised regarding possible adverse impact on allograft function or secondary infections. METHODS: We studied 77 solid organ transplant inpatients with COVID-19 during 2 therapeutic eras (Era 1: March-May 2020, 21 patients; and Era 2: June-November 2020, 56 patients) and 52 solid organ transplant outpatients. RESULTS: In Era 1, no patients received remdesivir or dexamethasone, and 4 of 21 (19.4%) received convalescent plasma, whereas in Era 2, remdesivir (24/56, 42.9%), dexamethasone (24/56, 42.9%), and convalescent plasma (40/56, 71.4%) were commonly used. Mortality was low across both eras, 4 of 77 (5.6%), and rejection occurred in only 2 of 77 (2.8%) inpatients; infections were similar in hypoxemic patients with or without dexamethasone. Preexisting graft dysfunction was associated with greater need for hospitalization, higher severity score, and lower survival. Acute kidney injury was present in 37.3% of inpatients; renal function improved more rapidly in patients who received remdesivir and convalescent plasma. Post-COVID-19 renal and liver function were comparable between eras, out to 90 d. CONCLUSIONS: Newer COVID-19 therapies did not appear to have a deleterious effect on allograft function, and infectious complications were comparable
    corecore