7 research outputs found

    A passive de-orbiting strategy for high altitude CubeSat missions using a deployable reflective balloon

    Get PDF
    A de-orbiting strategy for small satellites, in particular CubeSats, is proposed which exploits the effect of solar radiation pressure to increase the spacecraft orbit eccentricity so that the perigee falls below an altitude where atmospheric drag will cause the spacecraft orbit to naturally decay. This is achieved by fitting the spacecraft with an inflatable reflective balloon. Once this is fully deployed, the overall area-to-mass ratio of the spacecraft is increased; hence solar radiation pressure and aerodynamic drag have a greatly increased effect on the spacecraft orbit. An analytical model of the orbit evolution due to solar radiation pressure and the J2 effect as a Hamiltonian system shows the evolution of an initially circular orbit. The maximum reachable orbit eccentricity as a function of semi-major axis and area-to-mass ratio can be found and used to determine the size of balloon required for de-orbiting from circular orbits of different altitudes. A system design of the device is performed and the feasibility of the proposed de-orbiting strategy is assessed and compared to the use of conventional thrusters. The use of solar radiation pressure to increase the orbit eccentricity enables passive de-orbiting from significantly higher altitudes than conventional drag augmentation devices

    Electrochromic orbit control for smart-dust devices

    Get PDF
    Recent advances in MEMS (micro electromechanical systems) technology are leading to spacecraft which are the shape and size of computer chips, so-called SpaceChips, or ‘smart dust devices’. These devices can offer highly distributed sensing when used in future swarm applications. However, they currently lack a feasible strategy for active orbit control. This paper proposes an orbit control methodology for future SpaceChip devices which is based on exploiting the effects of solar radiation pressure using electrochromic coatings. The concept presented makes use of the high area-to-mass ratio of these devices, and consequently the large force exerted upon them by solar radiation pressure, to control their orbit evolution by altering their surface optical properties. The orbital evolution of Space Chips due to solar radiation pressure can be represented by a Hamiltonian system, allowing an analytic development of the control methodology. The motion in the orbital element phase space resembles that of a linear oscillator, which is used to formulate a switching control law. Additional perturbations and the effect of eclipses are accounted for by modifying the linearized equations of the secular change in orbital elements around an equilibrium point in the phase space of the problem. Finally, the effectiveness of the method is demonstrated in a test case scenario

    A Passive High Altitude Deorbiting Strategy

    Get PDF
    A de-orbiting strategy for small satellites, in particular CubeSats, is proposed which exploits the effect of solar radiation pressure to increase the spacecraft orbit eccentricity so that the perigee falls below an altitude where atmospheric drag will cause the spacecraft orbit to naturally decay. This is achieved by fitting the spacecraft with an inflatable reflective balloon. Once this is fully deployed, the overall area-to-mass ratio of the spacecraft is increased; hence solar radiation pressure and aerodynamic drag have a greatly increased effect on the spacecraft orbit. An analytical model of the orbit evolution due to solar radiation pressure and the J2 effect as a Hamiltonian system shows the evolution of an initially circular orbit. The maximum reachable orbit eccentricity as a function of semi-major axis and area-to-mass ratio can be found and used to determine the size of balloon required for de-orbiting from circular orbits of different altitudes. A system design of the device is performed and the feasibility of the proposed de-orbiting strategy is assessed and compared to the use of conventional thrusters. The use of solar radiation pressure to increase the orbit eccentricity enables passive de-orbiting from significantly higher altitudes than conventional drag augmentation devices

    Solar radiation pressure-augmented deorbiting: Passive end-of-life disposal from high-altitude orbits

    No full text
    A deorbiting strategy for small satellites is proposed that exploits the effect of solar radiation pressure to increase the spacecraft orbit eccentricity so that the perigee falls below an altitude where atmospheric drag will cause the spacecraft orbit to naturally decay. This is achieved by fitting the spacecraft with an inflatable reflective balloon. Once this is fully deployed, the overall area-to-mass ratio of the spacecraft is increased; hence, solar radiation pressure and aerodynamic drag have a greatly increased effect on the spacecraft orbit. An analytical model of the orbit evolution due to solar radiation pressure and the J2 effect as a Hamiltonian system show the evolution of an initially circular orbit. The maximum reachable orbit eccentricity as a function of semimajor axis and area-to-mass ratio is found analytically for deorbiting from circular equatorial orbits of different altitudes. The analytical planar model is then adapted for sun-synchronous orbits. The model is validated numerically and verified for three test cases using a highaccuracy orbit propagator. The regions of orbits for which solar radiation pressure-augmented deorbiting is most effective are identified. Finally, different options for the design of the deorbiting device are discussed. Copyright © 2012 by Charlotte LĂŒcking. Published by the American Institute of Aeronautics and Astronautics, Inc

    Solar radiation pressure-augmented deorbiting: passive end-of-life disposal from high-altitude orbits

    No full text
    A deorbiting strategy for small satellites is proposed that exploits the effect of solar radiation pressure to increase the spacecraft orbit eccentricity so that the perigee falls below an altitude where atmospheric drag will cause the spacecraft orbit to naturally decay. This is achieved by fitting the spacecraft with an inflatable reflective balloon. Once this is fully deployed, the overall area-to-mass ratio of the spacecraft is increased; hence, solar radiation pressure and aerodynamic drag have a greatly increased effect on the spacecraft orbit. An analytical model of the orbit evolution due to solar radiation pressure and the J2 effect as a Hamiltonian system show the evolution of an initially circular orbit. The maximum reachable orbit eccentricity as a function of semimajor axis and area-to-mass ratio is found analytically for deorbiting from circular equatorial orbits of different altitudes. The analytical planar model is then adapted for sun-synchronous orbits. The model is validated numerically and verified for three test cases using a high-accuracy orbit propagator. The regions of orbits for which solar radiation pressure-augmented deorbiting is most effective are identified. Finally, different options for the design of the deorbiting device are discussed

    Mission and system design of a 3U cubesat for passive GTO to LEO transfer

    Get PDF
    This paper defines a mission concept and system design for a 3U CubeSat technology demonstration. The spacecraft carries an inflatable, ejectable balloon that is used to engineer its area-to-mass-ratio. In this way, the effects of aerodynamic drag and solar radiation pressure on the orbit evolution can be exploited in order to passively transfer from a geostationary transfer orbit (GTO) to a low Earth orbit (LEO). This is of importance since with the increasing interest in CubeSat missions, demand for piggy-back launches to LEO is exceeding availability. In order to tap into the many GTO launches an appropriate strategy is therefore needed to transfer CubeSats from the release orbit into a LEO orbit. The strategy proposed here exploits the effects of atmospheric drag and solar radiation pressure to passively decrease the apogee altitude and increase the perigee altitude respectively. This is achieved by deploying a light-weight balloon that increases the area-to-mass-ratio of the spacecraft. After deployment and rigidisation the manoeuvre occurs completely passively, allowing a power down of the spacecraft's electronics for the transfer duration to avoid radiation damage from the Van Allen belts. Once the goal orbit is reached the spacecraft can be powered up again and the balloon is ejected to avoid rapid deorbiting. It is shown that the abandoned balloon is removed from orbit within weeks. The paper contains mission design and scenario selection and the system design of the orbital transfer module. Copyright © (2012) by the International Astronautical Federation

    Orbital dynamics of high area-to-mass ratio spacecraft with J2 and solar radiation pressure for novel Earth observation and communication services

    No full text
    This paper investigates the effect of planetary oblateness and solar radiation pressure on the orbits of high area-to-mass spacecraft. A planar Hamiltonian model shows the existence of equilibrium orbits with the orbit apogee pointing towards or away from the Sun. These solutions are numerically continued to non-zero inclinations and considering the obliquity of the ecliptic plane relative to the equator. Quasi-frozen orbits are identified in eccentricity, inclination and the angle between the Sun-line and the orbit perigee. The long-term evolution of these orbits is then verified through numerical integration. A set of ‘heliotropic’ orbits with apogee pointing in the direction of the Sun is proposed for enhancing imaging and telecommunication on the day side of the Earth. The effects of J2 and solar radiation pressure are exploited to obtain a passive rotation of the apsides line following the Sun; moreover the effect of solar radiation pressure enables such orbits at higher eccentricities with respect to the J2 only case
    corecore