2 research outputs found
Chemical and Structural Analysis of an Antibody Folding Intermediate Trapped during Glycan Biosynthesis
Human IgG Fc glycosylation modulates immunological effector
functions
such as antibody-dependent cellular cytotoxicity and phagocytosis.
Engineering of Fc glycans therefore enables fine-tuning of the therapeutic
properties of monoclonal antibodies. The N-linked glycans of Fc are
typically complex-type, forming a network of noncovalent interactions
along the protein surface of the Cγ2 domain. Here, we manipulate
the mammalian glycan-processing pathway to trap IgG1 Fc at sequential
stages of maturation, from oligomannose- to hybrid- to complex-type
glycans, and show that the Fc is structurally stabilized following
the transition of glycans from their hybrid- to complex-type state.
X-ray crystallographic analysis of this hybrid-type intermediate reveals
that N-linked glycans undergo conformational changes upon maturation,
including a flip within the trimannosyl core. Our crystal structure
of this intermediate reveals a molecular basis for antibody biogenesis
and provides a template for the structure-guided engineering of the
protein–glycan interface of therapeutic antibodies
Chemical and Structural Analysis of an Antibody Folding Intermediate Trapped during Glycan Biosynthesis
Human IgG Fc glycosylation modulates immunological effector
functions
such as antibody-dependent cellular cytotoxicity and phagocytosis.
Engineering of Fc glycans therefore enables fine-tuning of the therapeutic
properties of monoclonal antibodies. The N-linked glycans of Fc are
typically complex-type, forming a network of noncovalent interactions
along the protein surface of the Cγ2 domain. Here, we manipulate
the mammalian glycan-processing pathway to trap IgG1 Fc at sequential
stages of maturation, from oligomannose- to hybrid- to complex-type
glycans, and show that the Fc is structurally stabilized following
the transition of glycans from their hybrid- to complex-type state.
X-ray crystallographic analysis of this hybrid-type intermediate reveals
that N-linked glycans undergo conformational changes upon maturation,
including a flip within the trimannosyl core. Our crystal structure
of this intermediate reveals a molecular basis for antibody biogenesis
and provides a template for the structure-guided engineering of the
protein–glycan interface of therapeutic antibodies