6 research outputs found
Travel-related MERS-CoV cases: An assessment of exposures and risk factors in a group of Dutch travellers returning from the Kingdom of Saudi Arabia, May 2014
__Background:__ In May 2014, Middle East respiratory syndrome coronavirus (MERS-CoV) infection, with closely related viral genomes, was diagnosed in two Dutch residents, returning from a pilgrimage to Medina and Mecca, Kingdom of Saudi Arabia (KSA). These patients travelled with a group of 29 other Dutch travellers. We conducted an epidemiological assessment of the travel group to identify likely source(s) of infection and presence of potential risk factors.
__Methods:__ All travellers, including the two cases, completed a questionnaire focussing on potential human, animal and food exposures to MERS-CoV. The questionnaire was modified from the WHO MERS-CoV questionnaire, taking into account the specific route and activities of the travel group.
__Results:__ Twelve non-cases drank unpasteurized camel milk and had contact with camels. Most travellers, including one of the two patients (Case 1), visited local markets, where six of them consumed fruits. Two travellers, including Case 1, were exposed to coughing patients when visiting a hospital in Medina. Four travellers, including Case 1, visited two hospitals in Mecca. All travellers had been in contact with Case 1 while he was sick, with initially non-respiratory complaints. The cases were found to be older than the other travellers and both had co-morbidities.
__Conclusions:__ This epidemiological study revealed the complexity of MERS-CoV outbreak investigations with multiple potential exposures to MERS-CoV reported such as healthcare visits, camel exposure, and exposure to untreated food products. Exposure to MERS-CoV during a hospital visit is considered a likely source of infection for Case 1 but not for Case 2. For Case 2, the most likely source could not be determined. Exposure to MERS-CoV via direct contact with animals or dairy products seems unlikely for the two Dutch cases. Furthermore, exposure to a common but still unidentified source cannot be ruled out. More comprehensive research into sources of infection in the Arabian Peninsula is needed to strengthen and specify the prevention of MERS-CoV infections
Travel-related MERS-CoV cases: an assessment of exposures and risk factors in a group of Dutch travellers returning from the Kingdom of Saudi Arabia, May 2014
BACKGROUND: In May 2014, Middle East respiratory syndrome coronavirus (MERS-CoV) infection, with closely related viral genomes, was diagnosed in two Dutch residents, returning from a pilgrimage to Medina and Mecca, Kingdom of Saudi Arabia (KSA). These patients travelled with a group of 29 other Dutch travellers. We conducted an epidemiological assessment of the travel group to identify likely source(s) of infection and presence of potential risk factors. METHODS: All travellers, including the two cases, completed a questionnaire focussing on potential human, animal and food exposures to MERS-CoV. The questionnaire was modified from the WHO MERS-CoV questionnaire, taking into account the specific route and activities of the travel group. RESULTS: Twelve non-cases drank unpasteurized camel milk and had contact with camels. Most travellers, including one of the two patients (Case 1), visited local markets, where six of them consumed fruits. Two travellers, including Case 1, were exposed to coughing patients when visiting a hospital in Medina. Four travellers, including Case 1, visited two hospitals in Mecca. All travellers had been in contact with Case 1 while he was sick, with initially non-respiratory complaints. The cases were found to be older than the other travellers and both had co-morbidities. CONCLUSIONS: This epidemiological study revealed the complexity of MERS-CoV outbreak investigations with multiple potential exposures to MERS-CoV reported such as healthcare visits, camel exposure, and exposure to untreated food products. Exposure to MERS-CoV during a hospital visit is considered a likely source of infection for Case 1 but not for Case 2. For Case 2, the most likely source could not be determined. Exposure to MERS-CoV via direct contact with animals or dairy products seems unlikely for the two Dutch cases. Furthermore, exposure to a common but still unidentified source cannot be ruled out. More comprehensive research into sources of infection in the Arabian Peninsula is needed to strengthen and specify the prevention of MERS-CoV infections
Development of a resource modelling tool to support decision makers in pandemic influenza preparedness: The AsiaFluCap Simulator.
BACKGROUND: Health care planning for pandemic influenza is a challenging task which requires predictive models by which the impact of different response strategies can be evaluated. However, current preparedness plans and simulations exercises, as well as freely available simulation models previously made for policy makers, do not explicitly address the availability of health care resources or determine the impact of shortages on public health. Nevertheless, the feasibility of health systems to implement response measures or interventions described in plans and trained in exercises depends on the available resource capacity. As part of the AsiaFluCap project, we developed a comprehensive and flexible resource modelling tool to support public health officials in understanding and preparing for surges in resource demand during future pandemics. RESULTS: The AsiaFluCap Simulator is a combination of a resource model containing 28 health care resources and an epidemiological model. The tool was built in MS Excel© and contains a user-friendly interface which allows users to select mild or severe pandemic scenarios, change resource parameters and run simulations for one or multiple regions. Besides epidemiological estimations, the simulator provides indications on resource gaps or surpluses, and the impact of shortages on public health for each selected region. It allows for a comparative analysis of the effects of resource availability and consequences of different strategies of resource use, which can provide guidance on resource prioritising and/or mobilisation. Simulation results are displayed in various tables and graphs, and can also be easily exported to GIS software to create maps for geographical analysis of the distribution of resources. CONCLUSIONS: The AsiaFluCap Simulator is freely available software (http://www.cdprg.org) which can be used by policy makers, policy advisors, donors and other stakeholders involved in preparedness for providing evidence based and illustrative information on health care resource capacities during future pandemics. The tool can inform both preparedness plans and simulation exercises and can help increase the general understanding of dynamics in resource capacities during a pandemic. The combination of a mathematical model with multiple resources and the linkage to GIS for creating maps makes the tool unique compared to other available software