235 research outputs found

    Dynamic regulation of integrin activation by intracellular and extracellular signals controls oligodendrocyte morphology

    Get PDF
    RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are.Abstract Background Myelination requires precise control of oligodendrocyte morphology and myelin generation at each of the axons contacted by an individual cell. This control must involve the integration of extracellular cues, such as those on the axon surface, with intrinsic developmental programmes. We asked whether integrins represent one class of oligodendrocyte cell-surface receptors able to provide this integration. Results Integrins signal via a process of activation, a conformational change that can be induced either by "outside-in" signals comprising physiological extracellular matrix ligands (mimicked by the pharmacological use of the divalent cation manganese) or "inside-out" signalling molecules such as R-Ras. Increasing levels of outside-in signalling via the laminin receptor α6β1 integrin were found to promote oligodendrocyte processing and myelin sheet formation in culture. Similar results were obtained when inside-out signalling was increased by the expression of a constitutively-active R-Ras. Inhibiting inside-out signalling by using dominant-negative R-Ras reduces processes and myelin sheets; importantly, this can be partially rescued by the co-stimulation of outside-in signalling using manganese. Conclusion The balance of the equilibrium between active and inactive integrins regulates oligodendrocyte morphology, which is itself regulated by extrinsic and intrinsic cues so providing a mechanism of signal integration. As laminins capable of providing outside-in signals are present on axons at the time of myelination, a mechanism exists by which morphology and myelin generation might be regulated independently in each oligodendrocyte process.Peer Reviewe

    Physical forces in myelination and repair: a question of balance?

    Get PDF
    A recent report in BMC Cell Biology examines how the balance of extracellular forces and intracellular contractions regulate the shape changes required for oligodendrocyte myelination. A failure of remyelination such as seen in multiple sclerosis could be caused by loss of this balance

    Hippocampal neurogenesis requires cell-autonomous thyroid hormone signaling

    Get PDF
    Adult hippocampal neurogenesis is strongly dependent on thyroid hormone (TH). Whether TH signaling regulates this process in a cell-autonomous or non-autonomous manner remains unknown. To answer this question, we used global and conditional knockouts of the TH transporter monocarboxylate transporter 8 (MCT8), having first used FACS and immunohistochemistry to demonstrate that MCT8 is the only TH transporter expressed on neuroblasts and adult slice cultures to confirm a necessary role for MCT8 in neurogenesis. Both mice with a global deletion or an adult neural stem cell-specific deletion of MCT8 showed decreased expression of the cell-cycle inhibitor P27KIP1, reduced differentiation of neuroblasts, and impaired generation of new granule cell neurons, with global knockout mice also showing enhanced neuroblast proliferation. Together, our results reveal a cell-autonomous role for TH signaling in adult hippocampal neurogenesis alongside non-cell-autonomous effects on cell proliferation earlier in the lineage

    Enhancing Central Nervous System Remyelination in Multiple Sclerosis

    Get PDF
    Recent studies on adult neural stem cells and the developmental biology of myelination have generated the expectation that neural precursors can repair the damaged central nervous system of multiple sclerosis patients where the endogenous remyelination process has failed. As a result, many laboratories are engaged in translational studies in which the goal is to design ways to promote remyelination and repair. Here we raise issues highlighted by prior experimental and human work that should be considered lest these studies become “lost in translation.

    Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development

    Get PDF
    Specific integrins expressed on oligodendrocytes, the myelin-forming cells of the central nervous system, promote either differentiation and survival or proliferation by amplification of growth factor signaling. Here, we report that the Src family kinases (SFKs) Fyn and Lyn regulate each of these distinct integrin-driven behaviors. Fyn associates with α6β1 and is required to amplify platelet-derived growth factor survival signaling, to promote myelin membrane formation, and to switch neuregulin signaling from a phosphatidylinositol 3-kinase to a mitogen-activated protein kinase pathway (thereby changing the response from proliferation to differentiation). However, earlier in the lineage Lyn, not Fyn, is required to drive αVβ3-dependent progenitor proliferation. The two SFKs respond to integrin ligation by different mechanisms: Lyn, by increased autophosphorylation of a catalytic tyrosine; and Fyn, by reduced Csk phosphorylation of the inhibitory COOH-terminal tyrosine. These findings illustrate how different SFKs can act as effectors for specific cell responses during development within a single cell lineage, and, furthermore, provide a molecular mechanism to explain similar region-specific hypomyelination in laminin- and Fyn-deficient mice

    Laminin enhances the growth of human neural stem cells in defined culture media

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human neural stem cells (hNSC) have the potential to provide novel cell-based therapies for neurodegenerative conditions such as multiple sclerosis and Parkinson's disease. In order to realise this goal, protocols need to be developed that allow for large quantities of hNSC to be cultured efficiently. As such, it is important to identify factors which enhance the growth of hNSC. <it>In vivo</it>, stem cells reside in distinct microenvironments or niches that are responsible for the maintenance of stem cell populations. A common feature of niches is the presence of the extracellular matrix molecule, laminin. Therefore, this study investigated the effect of exogenous laminin on hNSC growth.</p> <p>Results</p> <p>To measure hNSC growth, we established culture conditions using B27-supplemented medium that enable neurospheres to grow from human neural cells plated at clonal densities. Limiting dilution assays confirmed that neurospheres were derived from single cells at these densities. Laminin was found to increase hNSC numbers as measured by this neurosphere formation. The effect of laminin was to augment the proliferation/survival of the hNSC, rather than promoting the undifferentiated state. In agreement, apoptosis was reduced in dissociated neurospheres by laminin in an integrin β1-dependent manner.</p> <p>Conclusion</p> <p>The addition of laminin to the culture medium enhances the growth of hNSC, and may therefore aid their large-scale production.</p

    Reappearance of an Embryonic Pattern of Fibronectin Splicing during Wound Healing in the Adult Rat

    Get PDF
    The adhesive extracellular matrix glycoprotein fibronectin (FN) is thought to play an important role in the cell migration associated with wound healing. Immunolocalization studies show abundant FN in healing wounds; however, these studies cannot define the cellular site(s) of FN synthesis, nor do they distinguish the different and potentially functionally distinct forms of FN that can arise from alternative splicing of the primary gene transcript. To examine these questions of FN synthesis and splicing during wound healing, we have performed in situ hybridization with segment-specific probes on healing wounds in adult rat skin. We find that the FN gene is expressed at increased levels after wounding both in the cells at the base of the wound and in subjacent muscle and dermis lateral to the wound. Interestingly, however, the pattern of splicing of FN mRNA was different in these areas. In adjacent dermis and muscle, the splicing pattern remains identical with that seen in normal adult rat skin, with two of the three spliced segments (EIIIA and EIIIB) excluded from FN mRNA. In contrast, these two segments are included in the FN mRNA present in the cells at the base of the wound. As a result, the mRNA in this region is spliced in a pattern identical with that found during early embryogenesis. The finding that the pattern of FN splicing during wound healing resembles an embryonic pattern suggests that alternative splicing may be used during wound healing as a mechanism to generate forms of FN that may be functionally more appropriate for the cell migration and proliferation associated with tissue repair

    The Number of Stem Cells in the Subependymal Zone of the Adult Rodent Brain is Correlated with the Number of Ependymal Cells and Not with the Volume of the Niche

    Get PDF
    The mammalian subependymal zone (SEZ; often called subventricular) situated at the lateral walls of the lateral ventricles of the brain contains a pool of relatively quiescent adult neural stem cells whose neurogenic activity persists throughout life. These stem cells are positioned in close proximity both to the ependymal cells that provide the cerebrospinal fluid interface and to the blood vessel endothelial cells, but the relative contribution of these 2 cell types to stem cell regulation remains undetermined. Here, we address this question by analyzing a naturally occurring example of volumetric scaling of the SEZ in a comparison of the mouse SEZ with the larger rat SEZ. Our analysis reveals that the number of stem cells in the SEZ niche is correlated with the number of ependymal cells rather than with the volume, thereby indicating the importance of ependymal-derived factors in the formation and function of the SEZ. The elucidation of the factors generated by ependymal cells that regulate stem cell numbers within the SEZ is, therefore, of importance for stem cell biology and regenerative neuroscience

    Regulatory mechanisms that mediate tenascin C-dependent inhibition of oligodendrocyte precursor differentiation

    Get PDF
    Here, we present mechanisms for the inhibition of oligodendendrocyte precursor cell (OPC) differentiation, a biological function of neural extracellular matrix (ECM). The differentiation of oligodendrocytes is orchestrated by a complex set of stimuli. In the present study, we investigated the signaling pathway elicited by the ECM glycoprotein tenascin C (Tnc). Tnc substrates inhibit myelin basic protein (MBP) expression of cultured rat oligodendrocytes, and, conversely, we found that the emergence of MBP expression is accelerated in forebrains of Tnc-deficient mice. Mechanistically, Tnc interfered with phosphorylation of Akt, which in turn reduced MBP expression. At the cell surface, Tnc associates with lipid rafts in oligodendrocyte membranes, together with the cell adhesion molecule contactin (Cntn1) and the Src family kinase (SFK) Fyn. Depletion of Cntn1 in OPCs by small interfering RNAs (siRNAs) abolished the Tnc-dependent inhibition of oligodendrocyte differentiation, while Tnc exposure impeded the activation of the tyrosine kinase Fyn by Cntn1. Concomitant with oligodendrocyte differentiation, Tnc antagonized the expression of the signaling adaptor and RNA-binding molecule Sam68. siRNA-mediated knockdown or overexpression of Sam68 delayed or accelerated oligodendrocyte differentiation, respectively. Inhibition of oligodendrocyte differentiation with the SFK inhibitor PP2 could be rescued by Sam68 overexpression, which may indicate a regulatory role for Sam68 downstream of Fyn. Our study therefore uncovers the first signaling pathways that underlie Tnc-induced, ECM-dependent maintenance of the immature state of OPCs
    corecore