4 research outputs found
Development of a toolkit for component-based automation systems
From the earliest days of mass production in the automotive industry there has been a
progressive move towards the use of flexible manufacturing systems that cater for
product variants that meet market demands. In recent years this market has become
more demanding with pressures from legislation, globalisation and increased
customer expectations. This has lead to the current trends of mass customisation in
production.
In order to support this manufacturing systems are not only becoming more flexibleâ€
to cope with the increased product variants, but also more agile‡ such that they may
respond more rapidly to market changes. Modularisation§ is widely used to increase
the agility of automation systems, such that they may be more readily reconfigured¶.
Also with globalisation into India and Asia semi-automatic machines (machines that
interact with human operators) are more frequently used to reduce capital outlay and
increase flexibility. There is an increasing need for tools and methodologies that
support this in order to improve design robustness, reduce design time and gain a
competitive edge in the market.
The research presented in this thesis is built upon the work from
COMPAG/COMPANION (COMponent- based Paradigm for AGile automation, and
COmmon Model for PArtNers in automatION), and as part of the BDA (Business
Driven Automation), SOCRADES (Service Oriented Cross-layer infrastructure for
Distributed smart Embedded deviceS), and IMC-AESOP (ArchitecturE for Service-
Oriented Process – monitoring and control) projects conducted at Loughborough
University UK.
This research details the design and implementation of a toolkit for building and
simulating automation systems comprising components with behaviour described
using Finite State Machines (FSM). The research focus is the development of the
engineering toolkit that can support the automation system lifecycle from initial
design through commissioning to maintenance and reconfiguration as well as the
integration of a virtual human. This is achieved using a novel data structure that
supports component definitions for control, simulation, maintenance and the novel
integration of a virtual human into the automation system operation
Distribution of machine information using Blackboard designed component for remote monitoring of reconfigurable manufacturing systems
A blackboard-based design for a system component called the "Broadcaster" is described in this paper. It supports remote monitoring of reconfigurable manufacturing systems using a novel system architecture coupled with the Component-Based system paradigm. The design of this component has been evaluated using a case study on a web services-enabled test rig funded by the Ford Motor Company, U. K. The test rig has been implemented using a fully distributed control device called FTB, designed by the Schneider Electric Company. Evaluation of this component has been carried out using three scenario test cases which demonstrate the potentials offered when deploying this solution to a real production environment. The system component not only operates in a heterogeneous reconfigurable manufacturing environment, offering a vendor-independent solution to monitoring machines, but it also supports remote monitoring of the machines throughout their development and management lifecycles
“Broadcaster”: An architectural description of a prototype supporting real-time remote data propagation in distributed manufacturing
Globalisation of manufacturing activities tend to geographically distribute manufacturing entities, resulting into each entity adopting its own mechanism, for aggregating and analysing real-time shop floor machines' information. The enterprise systems normally employ sophisticated and computationally expensive techniques to access this data, even if they operate remotely having limited network connectivity and system legacies. There is a need to propagate machine information in soft real-time basis to these entities regardless of their geographic locations and / or mechanisms. Authors are presenting an architectural description of a prototype system called the ldquoBroadcasterrdquo which efficiently distributes manufacturing machine information to a number of remotely located global engineering partners. This prototype addresses the emergent system issues like maintainability, reliability, integrity, robustness, flexibility and performance using a heterogeneous composition of ldquoBlackboardrdquo repository model with an event-driven invocation technique, implemented using interface-based strategy. The design and implementation assumes the control environment description to be engineered using the component-based system paradigm. Presently, the prototype is evaluated on a demonstration test rig provided by the Ford Motor Company, which is implemented using a fully Web services distributed control device called FTB, designed by the Schneider Electric Company. Based on the evaluation from the implementation stage, authors have justified and concluded the paper highlighting the key benefits of this approach, and described any future research that is to be carried out
“Broadcaster”: An architectural description of a prototype supporting real-time remote data propagation in distributed manufacturing
Globalisation of manufacturing activities tend to geographically distribute manufacturing entities, resulting into each entity adopting its own mechanism, for aggregating and analysing real-time shop floor machines' information. The enterprise systems normally employ sophisticated and computationally expensive techniques to access this data, even if they operate remotely having limited network connectivity and system legacies. There is a need to propagate machine information in soft real-time basis to these entities regardless of their geographic locations and / or mechanisms. Authors are presenting an architectural description of a prototype system called the ldquoBroadcasterrdquo which efficiently distributes manufacturing machine information to a number of remotely located global engineering partners. This prototype addresses the emergent system issues like maintainability, reliability, integrity, robustness, flexibility and performance using a heterogeneous composition of ldquoBlackboardrdquo repository model with an event-driven invocation technique, implemented using interface-based strategy. The design and implementation assumes the control environment description to be engineered using the component-based system paradigm. Presently, the prototype is evaluated on a demonstration test rig provided by the Ford Motor Company, which is implemented using a fully Web services distributed control device called FTB, designed by the Schneider Electric Company. Based on the evaluation from the implementation stage, authors have justified and concluded the paper highlighting the key benefits of this approach, and described any future research that is to be carried out