

This item was submitted to Loughborough’s Institutional Repository
(https://dspace.lboro.ac.uk/) by the author and is made available under the

following Creative Commons Licence conditions.

For the full text of this licence, please go to:
http://creativecommons.org/licenses/by-nc-nd/2.5/

“Broadcaster”: An Architectural Description
of a Prototype Supporting Real-time

Remote Data Propagation in Distributed
Manufacturing

V. Barot*, R. Harrison*, C.S. McLeod* and A. A. West*

*Wolfson School of Mechanical and Manufacturing Engineering
Loughborough University, Loughborough, U.K

Email: {V.Barot, r.harrison, C.S.Mcleod, a.a.west}@lboro.ac.uk

Abstract - Globalisation of manufacturing activities tend to geo-
graphically distribute manufacturing entities, resulting into each
entity adopting its own mechanism, for aggregating and analys-
ing real-time shop floor machines’ information. The enterprise
systems normally employ sophisticated and computationally
expensive techniques to access this data, even if they operate
remotely having limited network connectivity and system lega-
cies. There is a need to propagate machine information in soft
real-time basis to these entities regardless of their geographic
locations and / or mechanisms. Authors are presenting an archi-
tectural description of a prototype system called the “Broad-
caster” which efficiently distributes manufacturing machine
information to a number of remotely located global engineering
partners. This prototype addresses the emergent system issues
like maintainability, reliability, integrity, robustness, flexibility
and performance using a heterogeneous composition of “Black-
board” repository model with an event-driven invocation tech-
nique, implemented using interface-based strategy. The design
and implementation assumes the control environment descrip-
tion to be engineered using the Component-Based system para-
digm. Presently, the prototype is evaluated on a demonstration
test rig provided by the Ford Motor Company, which is imple-
mented using a fully web services distributed control device
called FTB, designed by the Schneider Electric Company. Based
on the evaluation from the implementation stage, authors have
justified and concluded the paper highlighting the key benefits
of this approach, and described any future research that is to be
carried out.

I. INTRODUCTION

In this industrial era, operation of manufacturing activities
has evolved to follow the concept of a distributed paradigm
[1]. One of the key factors initiating such a change is global-
isation of manufacturing process. In order to provide the re-
quired flexibility and competitiveness, these manufacturing
activities tend to be geographically distributed spanning vari-
ous cities, countries and even continents. Every manufactur-
ing entity possesses their individual mechanism for aggregat-
ing and analysing its machine information. Furthermore, the
volume of interesting data emerging from the shop-floor ma-
chines is increasing and the management of it is becoming
more complex. The manufacturing community often use so-
phisticated and computationally expensive techniques to ac-
cess and analyse this data. This leads to the concept of satis-

fying various requirements identified by this distributive
business nature [2]. In addition, a number of challenges and
limitations in terms of availability of real-time machine in-
formation exist [3]. The scenario becomes even complicated
when the enterprise systems operate in a remote computing
environment with limited features such as network connec-
tivity and / or application legacy.

In order to provide the necessary satisfaction to the re-
quirements emerging from this distributed paradigm, a good
data management and propagation strategy has to be adopted
which allows efficient distribution of machine information
stemming from the shop floor, in a reliable and timely man-
ner, to a number of global engineering partners regardless of
their distribution nature and / or their mechanisms. In the
light of such a requirement, the authors have developed a
prototype called the “Broadcaster.” It is responsible to not
only efficiently collect and manage real-time information
from the shop floor machines, but also propagate it to unlim-
ited number of heterogeneous engineering remote partner
resources (for example; HMI, Remote HMI, ERP systems).
The prototype addresses maintainability, reliability, robust-
ness, flexibility, data integrity and the performance issues
using a heterogeneous design approach. The prototype applies
a blackboard repository model and an event-driven invocation
technique with clearly defined interface strategies for effi-
cient data management and propagation.

The system requirements and the state flows within the
event driven design are described by using UML and pro-
grammed using OOP techniques in dot Net framework. The
triggering events in the designed system correspond to the
messages transmitted between the components of the proto-
type. The system employs the basic publish/subscribe tech-
nique [4] for efficiently propagating the data to those clients
in need, leading to avoiding unnecessary bandwidth utilisa-
tion. The paper is organised as follows: The next section de-
tails the architectural description of the prototype design. Au-
thors have identified a number of targets and principles to
achieve this desired system design. A description of the
event-based approach with the blackboard repository incorpo-
rated into this system is also discussed, together with the in-
terfaces which offer flexibility to the prototype. Section three
discusses the implementation status of the prototype on a web

557978-1-4244-3760-3/09/$25.00 c© 2009 IEEE

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on September 24, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

service-enabled test rig. Based on the design and implementa-
tion, the authors have concluded this paper in the section four,
which identifies some major benefits of this implementation
and provides the direction of any future research work.

II. ARCHITECTURAL DESCRIPTION

A. Design Targets
The successful determination of any system is greatly af-

fected by a good architectural design [5]. Architecture corre-
sponds to the organisation of system functional units and the
specification of their interacting interfaces [6]. Prior to the
architectural description of this prototype, it is essential to
specify the design targets for its justification:

• Mainly targeted at remote distributed client instances hav-

ing features of varying degree and limitations.
• Seeks to minimise the time consumed in collecting, proc-

essing and propagating the machine information.
• Supports the issue of scalability, maintainability, reliabil-

ity, integrity and performance in the design.
• Incorporates the debugging and monitoring functionality

within the system, for local, as well as, remote propaga-
tion.

• Operates in multi-institutional and heterogeneous envi-
ronments.

B. Component-Based Paradigm
The achievements of these targets assume that the machine

control system architecture corresponds to the Component-
Based (CB) system paradigm. Thus the Broadcaster is in-
tended to be implemented in a distributed manufacturing en-
vironment which has been engineered using the CB approach.
The fundamental concept of this paradigm is that new sys-
tems are developed from existing components within the sys-
tem libraries. This reduces the costs and the efforts for devel-
oping a system, as well as, reduces the time to market the
product to meet new demands of customers. The major issue
of reconfigurability and reuse of manufacturing systems is
also addressed by this paradigm [7]. Harrison et al [8] de-
scribes the Component-Based paradigm by decomposing the
“System” into “Sub systems.” The sub systems are further
decomposed into “Components” which comprises of a num-
ber of “Elements” with “States.”

C. Design Principles and Interface Specification
The above identified targets (i.e. requirements) act as a ma-

jor factor that influences the design of this prototype. The
output of this design process describes the prototype’s system
architecture [9]. In order to achieve the design targets, a num-
ber of principles are considered when making design deci-
sions. These principles, that drive the design of the prototype,
are implemented via a set of control interfaces shown as a
simplified representation in the Fig. 1. These are:

· Mechanism independence: The architectural design incor-
porates the possibility of having independence from any low-

level, as well as high-level mechanism, which one may have
to generate, store, transfer and / or analyse machine data. This
is achieved via the “Mechanism Manager Control” that en-
capsulates the engineering definition associated with specific
parties.
· Geographic uniformity: Regardless of the geographic loca-
tion or the nature of the distribution adopted at higher-levels
or lower levels, the information is encoded and propagated in
a uniform XML format which can be decoded easily from one
schema to the other, as and when required by the distribution
partners. The main reason for adopting an XML-based repre-
sentation is to support the legacy structure of enterprise re-
sources as it may be inconvenient and/or expensive to discard
such systems. In addition, XML has various technologies
such as XSD for schema definition, which can be useful for
extension and manipulation of XML descriptions. It also
plays a major role in the description and provision of web
services [10]. By wrapping legacy systems as web services,
one can preserve the investments in a valuable system. The
uniformity feature is achieved within the “Dictionary Con-
trol” of the prototype.
· Information availability: All the generated machine infor-
mation is stored and time-stamped efficiently in a circular
memory buffer, acting as a blackboard, which implements
complex multi-threading queue mechanism. The storage and
management is done via the “Blackboard Management Con-
trol.” The access to real-time data, which is published in this
buffer, is also managed via this control interface. The pub-
lishing mechanism is carried with the help of “Mechanism
Manager Control.”
· Information access and security: All the remote partners
connecting to the prototype can be authenticated and vali-
dated for information access. This is implemented via the
“Registry Control.” Environment configurations can also be
managed via this control.

An important aspect of any design process is the specifica-
tion of the interfaces between all the components (i.e. objects)
of the system. As the interface provides an abstract model of
a system component, it does not reveal any details to other
parties concerned. The prototype has precisely defined and
implemented a number of interfaces (as shown in the Fig. 1.)
via one or more classes defined in the system using dot Net
programming language. The class (es) can be instantiated and
thus can be allowed to communicate with it through an inter-
face reference. The main reason for implementing an inter-
face is to provide encapsulation and abstraction to the class’s
implementation details, hence avoiding dependencies of cli-
ents on the interface. This leads to the design to be more
maintainable, flexible and powerful. In the Fig. 1, “Broad-
caster Control” is the main control shell which manages and
schedules all the activities in the prototype. Each top-level
interface control, e.g. “Dictionary,” has a number of inter-
faces, e.g. “GlobalDictionary” and “Control Parser”, which
provides a specific functionality to the system. Table I is an
example of a procedural interface listing definition imple-
mented in the Broadcaster for controlling various aspects of

558 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on September 24, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

Fig. 1. The “Broadcaster Control” managing all the interfaces

the prototype such as debugging information, status events,
corrupt messages, error messages and slots used from the
buffer. This procedural interface is part of the “GUIView”
interface.

D. Data Structure
As the information is required to be propagated to consum-

ers in soft real-time basis, there is always a risk of collecting
data faster than actually processing and propagating it further,
or vice versa. To smooth out these speed differences, authors
have implemented a circular data structure which acts as a
buffer queue where data can be saved and retrieved easily
using multithreading techniques. The table II shows a simple
algorithmic implementation listing for enqueuing and dequeu-
ing the machine data within the structure. The “Mx” is the
maximum preset capacity of the queue items which can be
reconfigured using a configuration tool available within the
prototype. “S” corresponds to various possible states in the
algorithmic implementation and FV / RV are the position
values of the front / rear pointers in the structure respectively.

Table I

 EXAMPLE PROCEDURAL INTERFACE DEFINITION
IN THE PROTOTYPE

Table II
ENQUEUE / DEQUEUE ALGORITHM IN THE PROTOTYPE

Mutual exclusion mechanism is implemented which prevents
the writing and the reading threads to access the same data
slot at the same time.

E. Heterogeneous Composition
The architecture of the Broadcaster is based upon hetero-

geneous composition of the conventional “Blackboard” re-
pository model with an event-driven invocation technique. In
the prototype, the central repository represents the current
state of the machine at a given time, and any change in this
state triggers the selection of various execution processes.
The event-based invocation is a system design method which
is based on an event-driven control. This control is not em-
bedded in an individual component but it is determined by an
externally generated trigger called an event [9]. Traditionally,
the event handlers allow the system to receive events and
invoke the corresponding operation(s). The same approach is
adopted in the design of this prototype where a number of
event-handlers are designed for handling variety of events
that are triggered in the system. The system requirements of
the prototype are described using Unified Modelling Lan-
guage (UML) [11] and the programming design of the system
is based on Object-oriented techniques, where the events cor-
respond to the messages shared between the objects of the
system. Though event driven approach is a very popular tech-
nique for memory-constrained embedded systems [12], it can
also be applied to the architectural design of higher level sys-
tems [13, 14]. In this design, the timing of events entirely
depends on its environment, thus the system must be able to
cope with the events when they occur. As the events are ir-
regularly occurring, it causes the system to move from one
state to another. For this reason, the event-driven approach
implements the tasks through the system as a finite state ma-
chine (FSM). The FSM is coded as objects to represent the

Broadcaster Control

Mechanism
Manager

Dictionary Blackboard
Management

Registry

Interfaces:
= ClientManager
= MachineSet
= GUIView
=AbstractMachine

Interfaces:
= GlobalDictionary
=ControlParser

Interfaces:
= Validation
= Configuration
= Translation
= Instance

Interfaces:
= QueueData
= CircularQueue
= FrozenState

Interface IBroadcasterView {
void debug_strs(string debug_txt)
void status_strs(string status_txt)
void errors_strs(string error_txt)
void corrupt_strs(string corrupt_txt)
void mem_used(int slot)
 }
//The above procedural interface can be implemented by a class.
//Objects instantiate a class, thus accesses the interface via an
//interface reference declaration in any language implementation.

<Queue>=Enqueue
S3:
 If! =S1 then
 If (RV<queue>� Mx-1) then
RV<queue> = FV<queue>
 S4
 Else
RV<queue> ++
 If (FV<queue> � RV<queue> AND Queue [FV<queue>! =NULL] then
ST: OVERFLOW
 Else
Queue [RV<queue>] � Qvalue

<Queue>=Dequeue
S4:
 If !S2 then
 If (FV<queue> � RV<queue>) then
FV<queue> =0 AND RV<queue>= -1)
 Else If (FV<queue>�Mx-1) then
FV<queue> =0
 Else
FV<queue> ++

2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009) 559

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on September 24, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

flow of execution through the system. The UML has been
used to support the description of the FSM. The event-driven
design allows the author to avoid any scalability issues which
may arise in processing messages [15]. The authors have al-
lowed the operating system scheduler to schedule the control
of threads. This enables one to manage the resources and re-
tain the performance of the system throughout its execution.

As described by Lee [16], any control system implemented
using the CB paradigm has control elements whose behaviour
is represented using finite state machines. The description of
such behaviours can be carried out via a set of states. A tran-
sition process from one state to the other is triggered by the
machine event. This leads to a number of critical messages to
be received by the prototype. The prototype collects and
stores the machine information in a circular data structure and
controls the propagation of this information to various remote
clients. As the data is collected, it is being published in a re-
configurable buffer by queuing up mechanism with the help
of a dedicated interface (i.e. “Blackboard Management Con-
trol,”) so that clients can subscribe to the data regardless of
their geographic locations or implementation mechanisms
(via “Mechanism Manager Control.”) The subscription of
clients is handled by this interface which in turn can interact
with another interface (i.e. “Registry Control”) to authenticate
remote connections.

Fig. 2 shows a general architectural description of events in
the design of this system. As events can either be triggered by
the machine or remote clients, the corresponding events are
detected by the prototype. The immediate asynchronous event
listener performs this duty by concurrently handling events
and forwarding the control to the classification event handler.
The classification event handler has its own set of top-level
event handlers which discriminates as to which type of events
are generated. For example, if the event handler detects a
machine event, it refers into its own registry which details all
the different event types that it can handle together with the
corresponding interested components (i.e. objects) for further
propagation. When a particular component generates an
event, for example, the availability of a state change machine
message, the event handler identifies the interested party (i.e.
object) by consulting its registry. This allows the handler to
pass the events further to those registered components.

In the Fig. 2, the flow of events from one level to the other
consumes concurrent threads to avoid performance degrada-
tion. At each major control level in the design, a small thread
pool is allocated [15], which is scheduled by the operating
system itself, thus simplifying the software engineering con-
cept. The threads within the thread pool are allocated using
their respective thread manager for each interface within the
prototype. In the system, the events are arbitrary triggered
when the values of variables within objects change. There is a
dedicated interface (i.e. instance control interface in the “Reg-
istry Control”) within the prototype which monitors these
values and raises the corresponding events. The approach of
adopting this design strategy allows the system to be decom-
posed down into smaller components which are represented
as objects, and thus potentially enhancing the prototype reus-
ability and maintenance.

III. IMPLEMENTATION STATUS

A. Experimental Setup and Evaluation
In order to establish confidence in the adopted approach,

and ensure that it delivers the targets identified, evaluation of
the prototype is a must. The prototype is currently evaluated
using a demonstration Festo test rig provided by the Ford
Motor Company. The rig is implemented using a fully web
services distributed control device called FTB (Field Termi-
nal Block) designed by the Schneider Electric Company [17].
FTB provides a truly distributed architecture that allows de-
vices to communicate with one another in a fully autonomous
environment. In the test rig, seven components are imple-
mented using four web services-enabled FTB’s fulfilling the
necessary orchestration and choreography system require-
ments. The best way of evaluating any system is to see how
well it meets the requirements identified [9]. A number of
simulation test cases were created to assist in discovering any
system defects and show that the system conforms to its re-
quirements. The system had to perform correctly using a
given set of simulated test cases, in order to demonstrate that
the targets were delivered. The evaluation of one such ma-
chine state propagation setup is shown in the Fig. 3. Fig. 3
shows that the Broadcaster propagated machine information
from the web services-enabled test rig to two remote end-user
client resources such as HMI and VRML model of the engi-
neering toolset. The Fig. 4 shows the test rig used for this
setup, where the control environment description has been
engineered using the CB system paradigm. The test cases
simulated the actual shop-floor machine data propagation
scenario whilst the rig was live (just like a real production
line). Successful soft real-time machine data propagation jus-
tified the usefulness of the architectural design adopted by the
authors.

In the experimental setup, machine information was gener-
ated as a stream of data when the finite state mechanism of a
particular element was triggered [16]. The frequency of data
generation ranged from tens to hundreds of events per second,
resulting into the propagation of such information. The
Broadcaster collected these data and efficiently propagated
them to the connected higher-level engineering resources
such as a Human Machine Interface, as shown in the Fig 3.
Real-time machine transmitted information was asynchronous
and soft-time in nature, that is, it was transmitted as a stream
of packetized TCP/IP messages. In this context, event corre-
sponds to the process of propagating any state change, mode
change and generation of time-critical machine error for ex-
ample, pairs check error.

B. Client_instance Tool
In order to accurately analyse a large number of client in-

stances connecting to the prototype on real time basis, the
authors developed a client_instance tool. It was authors main
intention to evaluate the emergent properties of the system,
therefore this tool simulated random remote connections of
various clients (having different performance mechanisms) to
the prototype, to evaluate the robustness, reliability and the

560 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on September 24, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

Fig. 2. Broadcaster’s event-driven invocation

Fig. 3. Top-left: Remote HMI instance, Top-right: Remote VRML represen-
tation of the test rig, Bottom-left: The “Broadcaster” prototype and Bottom-

right: Real-time machine events generation status

performance of the adopted approach. The robustness was
evaluated based on the percentage of events causing a system
failure or the amount of data corrupted whilst transmission.
The reliability corresponded to the availability of data and the
robustness of the system.

The performance of the system was evaluated using the
scalability metric. The prototype was tested for approximately
five days at defined time intervals to determine whether the
events generated by the rig were actually propagated to all the
connected clients using the prototype in a soft real-time basis.
Obviously, the remote connections were simulated within the
laboratory, so the network connection limitations were not
taken under consideration at this stage. The confidentiality of
the data being compromised by unauthenticated connections
was controlled via the “Registry Control” interface. This
functionality implemented a gateway for controlling the ac-
cess to the message structure (i.e. Blackboard repository) in
the prototype. The reliability and robustness of the prototype
clearly indicated that the approach was powerful enough as
the data was propagated to the connected remote clients in
soft-real time basis. The maximum number of simulated cli-
ents to be evaluated depended on the scalability of the sys-
tem. In terms of the performance, authors had to ensure that
the prototype was scalable enough to handle as many client

CB Element Control – simple 2-state FSM representation

State 1 State 2

EVENT

State Conditions

detects

Asynchronous Listening

Thread Pool
forwards

Classification Event Handler

classifies

Top-level Registry

Event Handler 1 Event Type 1

Event Handler 2 Event Type 2

Event Handler n Event Type n

Thread Pool

Event handler consults its registry to
determine which objects have sub-

scribed to this event, so that events can
be propagated further

Event Handler 2 Registry

Event Type 7

Event Type 9

Event Type n

Interest 1

Interest 2

Interest n

consults and
dispatches

subscriptions

Objects

Object 1 – T7

Object 2 – T9

Processing

Remote Partners

2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009) 561

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on September 24, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

Fig. 4. Web-service enabled test rig (left) corresponding to the Component-Based system paradigm (right).

instances as possible without compromising the system func-
tionality. Authors monitored the performance of the prototype
by gradually incrementing the number of remote connections
(while persisting the existing connections waiting for new
events from the test rig). The clients’ connections were gen-
erated using the random structure functionality of the dot Net
framework and the speed of accessing data for each client
varied from 10ms to 3/\103ms. None of the system events
failed and all the connected clients downloaded data without
any corruptions or complications. Throughout this phase, the
size of the structure was kept constant at around 5000 items
per cycle, where each item consumes up to 4 bytes of the as-
signed buffer slot.

Fig. 5 shows a graphical representation of the scalability
evaluation carried out using the client_instance tool for the
prototype. From previous research experiments, authors had
identified that the average processing time taken by the proto-
type for propagating each client’s event was approximately
74milliseconds [18]. Considering this value as a benchmark,
authors evaluated the performance of the Broadcaster by in-
crementing remote client instances in the multiples of 2N

(0<1<=N, N+=1) until the overall performance of the proto-
type degraded to around -35% of the benchmark value. This
gave the authors an uppermost boundary value of around
100milliseconds as a reference. This is quite an acceptable
value as the average response time requirements for data
propagations to any client application is around 500ms (or
1000ms for remote clients) in Powertrain assembly applica-
tions [19, 20]. It has to be noted that this is the maximum
propagation delay expected when a machine triggers an
event, which in turn has to be propagated to the clients. It can
be seen that the performance of the prototype was around
100ms when the number of clients were approximately 192.
Any further increment led to almost 20% growth in the proc-
essing time of the prototype. Therefore, the authors propose

that the scalability of the prototype remains stable for almost
approximately 200 simultaneous remote clients’ connections
to download shop-floor machine data. For any increment in
the number of instance connections, problems may arise in
terms of response times to process events in the prototype and
thus the performance may suffer.

Fig. 5. “Broadcaster” performance evaluation

CB Implementation

“System”

“Sub System”

“Component”

“Element”

“State”

562 2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009)

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on September 24, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

IV. CONCLUSION

The authors have discussed an architectural description of a
prototype called the “Broadcaster” in this paper. This proto-
type offers an approach where by shopfloor machine informa-
tion can seamlessly be propagated to a number of remote cli-
ents regardless of their distribution nature and / or implemen-
tation mechanisms. The prototype assumes that the descrip-
tion of the control environment is engineered using the Com-
ponent-Based system paradigm. The architecture of the
Broadcaster is based upon heterogeneous composition of the
conventional “Blackboard” repository model with an event-
driven invocation technique implemented using interface-
based strategy. This offers the required flexibility, recon-
figurability, maintainability, reliability, integrity, security and
a well accepted performance. Authors have implemented a
circular data structure which acts as a buffer queue where
data can be saved and retrieved easily using multithreading
techniques.

The prototype has been evaluated on a demonstration web
services-enabled test rig which mimics a real-world manufac-
turing production line. A client_instance tool has been devel-
oped for evaluating the performance of the prototype in a
distributed manufacturing scenario. It has been observed that
on average, the prototype can propagate machine information
reliably to approximately 200 client resources with an accept-
able performance. The current implementation only allows
TCP based communications due to the strong integration of
TCP/IP with event notifications. The evaluation of the above
solution to a PLC-based control system is under progress.
Furthermore, a substantial amount of research work is to be
carried out when implementing such a solution to a real world
manufacturing practice such as the Powertrain assembly line.

Such an implementation to a manufacturing enterprise is
beneficial as it provides new ways to support machines re-
gardless of their locations. It also establishes new relation-
ships between supply-chain CB implementation partners and
makes information access more efficient. The key aspect of
such an implementation stems from the provision of open
vendor independent solutions, supporting wide array of
mechanisms in a distributed manufacturing environment.

ACKNOWLEDGMENTS

The authors would like to acknowledge EPSRC, Loughbor-
ough IMCRC and EU SOCRADES framework 6 research
project and other collaborating companies and colleagues for
their kind support.

REFERENCES

[1]. Harrison, R., A.A.West., R.H.Weston, and R.P. Monfared, Dis-
tributed engineering of manufacturing machines. Proceedings of
the Institution of Mechanical Engineers, Part B: Journal of Engi-
neering Manufacture, 2001. 215(2): p. 217-231.

[2]. Hao, Q., W. Shen, and L. Wang, Towards a cooperative distrib-
uted manufacturing management framework. Computers in Indus-
try, 2005. 56(1): p. 71-84.

[3]. Wang, L., P.Orban, A. Cunningham, and S.Lang, Remote real-
time CNC machining for web-based manufacturing. Robotics and
Computer Integrated Manufacturing, 2004. 20(6): p. 563-571.

[4]. Linthicum, D.S., Enterprise application integration. 2000.
[5]. Shaw, M. and D. Garlan, Software architecture: perspectives on

an emerging discipline. 1996: Prentice-Hall, Inc. Upper Saddle
River, NJ, USA.

[6]. Bosch, J., Software Architecture: The Next Step. LECTURE
NOTES IN COMPUTER SCIENCE, 2004: p. 194-199.

[7]. Harrison, R., A.W.Colombo, A.A.West, and S.M.Lee, Recon-
figurable modular automation systems for automotive power-train
manufacture. International Journal of Flexible Manufacturing
Systems, 2006. 18(3): p. 175-190.

[8]. Harrison, R., S.M. Lee, and A.A. West, Lifecycle engineering of
modular automated machines. 2nd IEEE International Conference
on Industrial Informatics, 2004: p. 501-506.

[9]. Sommerville, I., Software Engineering. 8th ed. 2007, Reading,
Massachusetts: Addison-Wesley Publishing Company.

[10]. Erl, T., Service-Oriented Architecture: A Field Guide to Integrat-
ing XML and Web Services. 2004: Prentice Hall PTR Upper Sad-
dle River, NJ, USA.

[11]. Barot, V. and J.Carter, Design and Development of a Judicial
Advisory Expert System (JAES) to Resolve Legal SGA Ownership
Dispute Cases, in Proceedings of the 2008 UK Workshop on
Computational Intelligence (UKCI08). September 2008: Leices-
ter, UK.

[12]. Dunkels, A., O. Schmidt, T.Voigt, and M.Ali, Protothreads:
simplifying event-driven programming of memory-constrained
embedded systems. 2006: ACM Press New York, NY, USA.

[13]. Garlan, D., G.E. Kaiser, and D. Notkin, Using tool abstraction to
compose systems. IEEE Computer, 1992. 25(6): p. 30-38.

[14]. Philip, G.C., Software design guidelines for event-driven pro-
gramming. The Journal of Systems & Software, 1998. 41(2): p.
79-91.

[15]. Welsh, M., D. Culler, and E. Brewer, SEDA: An Architecture for
Well-Conditioned, Scalable Internet Services. 2000.

[16]. Lee, S.M., R. Harrison, and A.A. West, A component-based con-
trol system for agile manufacturing. Proceedings of the Institution
of Mechanical Engineers, Part B: Journal of Engineering Manu-
facture, 2005. 219(1): p. 123-135.

[17]. Colombo, A.W., SOCRADES.
http://www.socrades.eu/Documents/objects/file1224780946.72,
Accessed on: Jan 2009.

[18]. Barot, V., C.S.Mcleod., R.Harrison, and A.A.West, Efficient real-
time remote data propagation mechanism for a Component-Based
approach to distributed manufacturing. in International Confer-
ence on Manufacturing Systems Engineering. April 2009: Rome,
Italy, in press.

[19]. COMPAG, COMponent Based Paradigm for AGile Automation.
Loughborough University research project.

[20]. Lee, L.J., A Next Generation Manufacturing Control System. PhD
dissertation, MSI Research Institute, Loughborough University
(internal), 2003.

2009 7th IEEE International Conference on Industrial Informatics (INDIN 2009) 563

Authorized licensed use limited to: LOUGHBOROUGH UNIVERSITY. Downloaded on September 24, 2009 at 06:02 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

