101 research outputs found

    Evolving evidence implicates cytomegalovirus as a promoter of malignant glioma pathogenesis

    Get PDF
    Human cytomegalovirus (HCMV) was first reported to be strongly associated with human malignant gliomas in 2002. HCMV is a herpesvirus that causes congenital brain infection and multi-organ disease in immumocompromised individuals. Malignant gliomas are the most common and aggressive adult brain tumors and glioblastoma multiforme (GBM), the highest grade glioma, is associated with a life expectancy of less than two years. HCMV gene products encode for multiple proteins that can promote the various signaling pathways critical to tumor growth, including those involved in mitogenesis, mutagenesis, apoptosis, inflammation, angiogenesis, invasion and immuno-evasion. Several groups have now demonstrated that human malignant gliomas are universally infected with HCMV and express gene products that can promote key signaling pathways in glioma pathogenesis. In this review I discuss specific HCMV gene products that we and others have recently found to be expressed in GBM in vivo, including the HCMV IE1, US28, gB and IL-10 proteins. The roles these HCMV gene products play in dysregulating key pathways in glioma biology, including the PDGFR, AKT, STAT3, and monocyte/microglia function are discussed. Finally, I review emerging human clinical trials for GBM based on anti-HCMV strategies

    Post-Concussion and Post-Traumatic Stress Symptoms after Pediatric Traumatic Brain Injury: Shared Vulnerability Factors?

    Get PDF
    Following pediatric traumatic brain injury (TBI), post-concussion symptoms (PCS) and post-traumatic stress symptoms (PTSS) occur commonly; however, it is unknown to what degree they overlap. The study examined PCS and PTSS persisting 7 weeks after injury in children and adolescents ages 8-15 years with TBI (n = 89) or extracranial injury (EI; n = 40) after vehicle collisions. TBI was divided into mild, complicated-mild/moderate, and severe groups. Parents retrospectively rated children\u27s pre-injury symptoms and behavior problems, and children completed self-report measures after injury. PCS and PTSS total scores were significantly correlated in TBI and EI groups, respectively, for child (rs = 0.75; rs = 0.44), and adolescent (rs = 0.61; rs = 0.67) cohorts. Generalized linear models examined whether injury type and severity, age, sex, and pre-injury symptom ratings predicted PCS and PTSS total scores and factor scores. Specific PCS and PTSS factor scores were elevated in different TBI severity groups, with most frequent problems following mild or severe TBI. PCS did not differ by age; however, girls had more emotional symptoms than boys. Only PTSS were predicted by pre-injury externalizing behavior. Significant age by sex interactions indicated that adolescent girls had more total, avoidance, and hyperarousal PTSS symptoms than younger girls or all boys. PCS and PTSS significantly overlapped in both TBI and EI groups, highlighting shared persistent symptoms after injury. Shared vulnerability factors included female sex, milder TBI, and poorer pre-injury adjustment. Older age was a unique vulnerability factor for PTSS. Psychological health interventions after injury should be customized to address comorbid symptoms

    Stress Reactivity After Pediatric Traumatic Brain Injury: Relation With Behavioral Adjustment

    Get PDF
    Traumatic injury is linked increasingly to alterations in both stress response systems and psychological health. We investigated reactivity of salivary analytes of the hypothalamic-pituitary-adrenal axis (cortisol) and autonomic nervous system (salivary alpha amylase, sAA) during a psychosocial stress procedure in relation to psychological health outcomes. In a prospective cohort design, stress reactivity of children ages 8 to 15 years hospitalized for traumatic brain injury (TBI; n = 74) or extracranial injury (EI; n = 35) was compared with healthy controls (n = 51) 7 months after injury. Area under the curve increase (AUCinc) assessed pre-stressor to post-stressor cortisol and sAA values. Multi-variable general linear models evaluated demographic, family functioning, group, cortisol, and sAA AUCinc, and their interactions in relation to concurrent child and parent ratings of emotion regulation and internalizing and externalizing problems. Although AUCinc values were similar across groups, their relations with outcomes varied by group. Higher stress reactivity is typically associated with fewer adjustment problems. Relative to controls, greater sAA reactivity was associated with greater emotion dysregulation after TBI. In contrast, the relation of sAA reactivity with internalizing and generalized anxiety scores was flatter for both TBI and EI groups. The flattened and/or reversed direction of sAA reactivity with psychological health outcomes after TBI, and to a lesser degree EI, suggests autonomic nervous system dysregulation. Across groups, sAA reactivity interacted with sex on several psychological health outcomes with greater dysregulation in girls than in boys. Our findings highlight altered sAA, but not cortisol reactivity, as a potential mechanism of biological vulnerability associated with poorer adjustment after TBI

    As Time Goes by: Understanding Child and Family Factors Shaping Behavioral Outcomes After Traumatic Brain Injury

    Get PDF
    Objective: To model pre-injury child and family factors associated with the trajectory of internalizing and externalizing behavior problems across the first 3 years in children with pediatric traumatic brain injury (TBI) relative to children with orthopedic injuries (OI). Parent-reported emotional symptoms and conduct problems were expected to have unique and shared predictors. We hypothesized that TBI, female sex, greater pre-injury executive dysfunction, adjustment problems, lower income, and family dysfunction would be associated with less favorable outcomes. Methods: In a prospective longitudinal cohort study, we examined the level of behavior problems at 12 months after injury and rate of change from pre-injury to 12 months and from 12 to 36 months in children ages 4–15 years with mild to severe TBI relative to children with OI. A structural equation model framework incorporated injury characteristics, child demographic variables, as well as pre-injury child reserve and family attributes. Internalizing and externalizing behavior problems were indexed using the parent-rated Emotional Symptoms and Conduct Problems scales from the Strengths and Difficulties questionnaire. Results: The analysis cohort of 534 children [64% boys, M (SD) 8.8 (4.3) years of age] included 395 with mild to severe TBI and 139 with OI. Behavior ratings were higher after TBI than OI but did not differ by TBI severity. TBI, higher pre-injury executive dysfunction, and lower income predicted the level and trajectory of both Emotional Symptoms and Conduct Problems at 12 months. Female sex and poorer family functioning were vulnerability factors associated with greater increase and change in Emotional Symptoms by 12 months after injury; unique predictors of Conduct Problems included younger age and prior emotional/behavioral problems. Across the long-term follow-up from 12 to 36 months, Emotional Symptoms increased significantly and Conduct Problems stabilized. TBI was not a significant predictor of change during the chronic stage of recovery. Conclusions: After TBI, Emotional Symptoms and Conduct Problem scores were elevated, had different trajectories of change, increased or stayed elevated from 12 to 36 months after TBI, and did not return to pre-injury levels across the 3 year follow-up. These findings highlight the importance of addressing behavioral problems after TBI across an extended time frame

    The role of steroids in the management of brain metastases: a systematic review and evidence-based clinical practice guideline

    Get PDF
    Do steroids improve neurologic symptoms in patients with metastatic brain tumors compared to no treatment? If steroids are given, what dose should be used? Comparisons include: (1) steroid therapy versus none. (2) comparison of different doses of steroid therapy. Target population These recommendations apply to adults diagnosed with brain metastases. Recommendations Steroid therapy versus no steroid therapy Asymptomatic brain metastases patients without mass effect Insufficient evidence exists to make a treatment recommendation for this clinical scenario. Brain metastases patients with mild symptoms related to mass effect Level 3 Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. It is recommended for patients who are symptomatic from metastatic disease to the brain that a starting dose of 4–8 mg/day of dexamethasone be considered. Brain metastases patients with moderate to severe symptoms related to mass effect Level 3 Corticosteroids are recommended to provide temporary symptomatic relief of symptoms related to increased intracranial pressure and edema secondary to brain metastases. If patients exhibit severe symptoms consistent with increased intracranial pressure, it is recommended that higher doses such as 16 mg/day or more be considered. Choice of Steroid Level 3 If corticosteroids are given, dexamethasone is the best drug choice given the available evidence. Duration of Corticosteroid Administration Level 3 Corticosteroids, if given, should be tapered slowly over a 2 week time period, or longer in symptomatic patients, based upon an individualized treatment regimen and a full understanding of the long-term sequelae of corticosteroid therapy. Given the very limited number of studies (two) which met the eligibility criteria for the systematic review, these are the only recommendations that can be offered based on this methodology. Please see “Discussion” and “Summary” section for additional details

    The role of chemotherapy in the management of newly diagnosed brain metastases: a systematic review and evidence-based clinical practice guideline

    Get PDF
    TARGET POPULATION: This recommendation applies to adults with newly diagnosed brain metastases; however, the recommendation below does not apply to the exquisitely chemosensitive tumors, such as germinomas metastatic to the brain. RECOMMENDATION: Should patients with brain metastases receive chemotherapy in addition to whole brain radiotherapy (WBRT)? Level 1 Routine use of chemotherapy following WBRT for brain metastases has not been shown to increase survival and is not recommended. Four class I studies examined the role of carboplatin, chloroethylnitrosoureas, tegafur and temozolomide, and all resulted in no survival benefit. Two caveats are provided in order to allow the treating physician to individualize decision-making: First, the majority of the data are limited to non small cell lung (NSCLC) and breast cancer; therefore, in other tumor histologies, the possibility of clinical benefit cannot be absolutely ruled out. Second, the addition of chemotherapy to WBRT improved response rates in some, but not all trials; response rate was not the primary endpoint in most of these trials and end-point assessment was non-centralized, non-blinded, and post-hoc. Enrollment in chemotherapy-related clinical trials is encouraged
    corecore