565 research outputs found
Recommended from our members
Oral Cytokine Levels Are More Linked to Levels of Plasma and Oral HIV-1 RNA Than to CD4+ T-Cell Counts in People With HIV.
BackgroundWe determined the levels of 11 soluble immune mediators in oral washings of AIDS Clinical Trials Group A5254 participants with varying degrees of plasma viremia and CD4 T-cell counts to characterize the mucosal immune response at different stages of HIV-1 infection.MethodsA5254 was a multicenter, cross-sectional study in people with HIV (PWH) recruited into 4 strata based on CD4 count and levels of plasma viremia: stratum (St) A: CD4 ≤200 cells/mm3, HIV-1 RNA (viral load [VL]) >1000 cps/mL; St B: CD4 ≤200, VL ≤1000; St C: CD4 >200, VL >1000; St D: CD4 >200, VL ≤1000. Oral/throat washings were obtained from all participants. Soluble markers were tested in oral/throat washings using a multibead fluorescent platform and were compared across strata. Linear regression was used to determine the associations between cytokines and HIV-1 in plasma and oral fluid.ResultsSt A participants had higher levels of interleukin (IL)-1β, IL-6, IL-17, tumor necrosis factor alpha (TNFα), and interferon gamma (IFNγ) compared with St B and D (P = .02; P < .0001) but were not different from St C. IL-8, IL-10, and IL-12 were elevated in St A compared with the other 3 strata (P = .046; P < .0001). Linear regression demonstrated that oral HIV-1 levels were associated with IL-1β, IL-6, IL-8, and TNFα production (R > .40; P < .001) when controlling for CD4 count and opportunistic infections.ConclusionsOur results show that high levels of oral HIV-1, rather than low CD4 counts, were linked to the production of oral immune mediators. Participants with AIDS and uncontrolled viremia demonstrated higher levels of pro- and anti-inflammatory soluble immune mediators compared with participants with lower HIV-1 RNA. The interplay of HIV-1 and these immune mediators could be important in the oral health of PWH
Regulatory T Cell Suppression of Gag-Specific CD8+ T Cell Polyfunctional Response After Therapeutic Vaccination of HIV-1-Infected Patients on ART
We tested the hypothesis that therapeutic vaccination against HIV-1 can increase the frequency and suppressive function of regulatory, CD4+ T cells (Treg), thereby masking enhancement of HIV-1-specific CD8+ T cell response. HIV-1-infected subjects on antiretroviral therapy (N = 17) enrolled in a phase I therapeutic vaccine trial received 2 doses of autologous dendritic cells (DC) loaded with HIV-1 peptides. The frequency of CD4+CD25hiFOXP3+ Treg in blood was determined prior to and after vaccination in subjects and normal controls. Polyfunctional CD8+ T cell responses were determined pre- and post-vaccine (N = 7) for 5 immune mediators after in vitro stimulation with Gag peptide, staphylococcal enterotoxin B (SEB), or medium alone. Total vaccine response (post-vaccine–pre-vaccine) was compared in the Treg(+) and Treg-depleted (Treg-) sets. After vaccination, 12/17 subjects showed a trend of increased Treg frequency (P = 0.06) from 0.74% to 1.2%. The increased frequency did not correlate with CD8+ T cell vaccine response by enzyme linked immunosorbent assay for interferon γ production. Although there was no significant change in CD8+ T cell polyfunctional response after vaccination, Treg depletion increased the polyfunctionality of the total vaccine response (P = 0.029), with a >2-fold increase in the percentage of CD8+ T cells producing multiple immune mediators. In contrast, depletion of Treg did not enhance polyfunctional T cell response to SEB, implying specificity of suppression to HIV-1 Gag. Therapeutic immunization with a DC-based vaccine against HIV-1 caused a modest increase in Treg frequency and a significant increase in HIV-1-specific, Treg suppressive function. The Treg suppressive effect masked an increase in the vaccine-induced anti-HIV-1-specific polyfunctional response. The role of Treg should be considered in immunotherapeutic trials of HIV-1 infection
Detection of HIV-1 RNA/DNA and CD4 mRNA in feces and urine from chronic HIV-1 infected subjects with and without anti-retroviral therapy
HIV-1 infects gut associated lymphoid tissues (GALT) very early after transmission by multiple routes. The infected GALT consequently serves as the major reservoir for HIV-1 infection and could constantly shed HIV-1 and CD4+ T cells into the intestinal lumen. To examine this hypothesis, we monitored HIV-1 RNA/DNA and CD4 mRNA in fecal samples of chronically infected subjects with and without antiretroviral therapy (ART). We compared this to levels of HIV-1 RNA/DNA in urine and blood from the same subjects. Our results show that HIV-1 DNA, RNA and CD4 mRNA were detected in 8%, 19% and 31% respectively, of feces samples from infected subjects with detectable plasma viral load, and were not detected in any of subjects on ART with undetectable plasma viral load. In urine samples, HIV-1 DNA was detected in 24% of infected subjects with detectable plasma viral load and 23% of subjects on ART with undetectable plasma viral load. Phylogenetic analysis of the envelope sequences of HIV-1 revealed distinct virus populations in concurrently collected serum, feces and urine samples from one subject. In addition, our study demonstrated for the first time the presence of CD4 mRNA in fecal specimens of HIV-1 infected subjects, which could be used to assess GALT pathogenesis in HIV-1 infection
Dendritic Cells Reveal a Broad Range of MHC Class I Epitopes for HIV-1 in Persons with Suppressed Viral Load on Antiretroviral Therapy
Background: HIV-1 remains sequestered during antiretroviral therapy (ART) and can resume high-level replication upon cessation of ART or development of drug resistance. Reactivity of memory CD8+ T lymphocytes to HIV-1 could potentially inhibit this residual viral replication, but is largely muted by ART in relation to suppression of viral antigen burden. Dendritic cells (DC) are important for MHC class I processing and presentation of peptide epitopes to memory CD8+ T cells, and could potentially be targeted to activate memory CD8+ T cells to a broad array of HIV-1 epitopes during ART. Principal Findings: We show for the first time that HIV-1 peptide-loaded, CD40L-matured DC from HIV-1 infected persons on ART induce IFN gamma production by CD8+ T cells specific for a much broader range and magnitude of Gag and Nef epitopes than do peptides without DC. The DC also reveal novel, MHC class I restricted, Gag and Nef epitopes that are able to induce polyfunctional T cells producing various combinations of IFN gamma, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1 beta and the cytotoxic de-granulation molecule CD107a. Significance: There is an underlying, broad antigenic spectrum of anti-HIV-1, memory CD8+ T cell reactivity in persons on ART that is revealed by DC. This supports the use of DC-based immunotherapy for HIV-1 infection. © 2010 Huang et al
DC-SIGN on B Lymphocytes Is Required For Transmission of HIV-1 to T Lymphocytes
Infection of T cells by HIV-1 can occur through binding of virus to dendritic cell (DC)-specific ICAM-3 grabbing nonintegrin (DC-SIGN) on dendritic cells and transfer of virus to CD4(+) T cells. Here we show that a subset of B cells in the blood and tonsils of normal donors expressed DC-SIGN, and that this increased after stimulation in vitro with interleukin 4 and CD40 ligand, with enhanced expression of activation and co-stimulatory molecules CD23, CD58, CD80, and CD86, and CD22. The activated B cells captured and internalized X4 and R5 tropic strains of HIV-1, and mediated trans infection of T cells. Pretreatment of the B cells with anti–DC-SIGN monoclonal antibody blocked trans infection of T cells by both strains of HIV-1. These results indicate that DC-SIGN serves as a portal on B cells for HIV-1 infection of T cells in trans. Transmission of HIV-1 from B cells to T cells through this DC-SIGN pathway could be important in the pathogenesis of HIV-1 infection
Influenza vaccine effectiveness among outpatients in the US Influenza Vaccine Effectiveness Network by study site 2011‐2016
BackgroundInfluenza vaccination is recommended for all US residents aged ≥6 months. Vaccine effectiveness (VE) varies by age, circulating influenza strains, and the presence of high‐risk medical conditions. We examined site‐specific VE in the US Influenza VE Network, which evaluates annual influenza VE at ambulatory clinics in geographically diverse sites.MethodsAnalyses were conducted on 27 180 outpatients ≥6 months old presenting with an acute respiratory infection (ARI) with cough of ≤7‐day duration during the 2011‐2016 influenza seasons. A test‐negative design was used with vaccination status defined as receipt of ≥1 dose of any influenza vaccine according to medical records, registries, and/or self‐report. Influenza infection was determined by reverse‐transcription polymerase chain reaction. VE estimates were calculated using odds ratios from multivariable logistic regression models adjusted for age, sex, race/ethnicity, time from illness onset to enrollment, high‐risk conditions, calendar time, and vaccination status‐site interaction.ResultsFor all sites combined, VE was statistically significant every season against all influenza and against the predominant circulating strains (VE = 19%‐50%) Few differences among four sites in the US Flu VE Network were evident in five seasons. However, in 2015‐16, overall VE in one site was 24% (95% CI = −4%‐44%), while VE in two other sites was significantly higher (61%, 95% CI = 49%‐71%; P = .002, and 53%, 95% CI = 33,67; P = .034).ConclusionWith few exceptions, site‐specific VE estimates aligned with each other and overall VE estimates. Observed VE may reflect inherent differences in community characteristics of the sites and highlights the importance of diverse settings for studying influenza vaccine effectiveness.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155981/1/irv12741_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155981/2/irv12741.pd
The Dual Impact of HIV-1 Infection and Aging on Naïve CD4+ T-Cells: Additive and Distinct Patterns of Impairment
HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection in older persons can have detrimental immunological effects that are not completely reversed by ART. As naïve T-cells are critically important in responses to neoantigens, we first analyzed two subsets (CD45RA+CD31+ and CD45RA+CD31-) within the naïve CD4+ T-cell compartment in young (20–32 years old) and older (39–58 years old), ART-naïve, HIV-1 seropositive individuals within 1–3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA+CD31+CD4+ and CD45RA+CD31-CD4+ T-cell subsets in comparison to age-matched seronegative controls, changes that resembled seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and reconstitution of CD45RA+CD31+CD4+ T-cells two years post-ART, but minimal reconstitution of the CD45RA+CD31-CD4+ subset, which could impair de novo immune responses. For both ART-naïve and ART-treated HIV-1-infected adults, a renewable pool of thymic emigrants is necessary to maintain CD4+ T-cell homeostasis. Overall, these results offer a partial explanation both for the faster disease progression of older adults and the observation that viral responders to ART present with clinical diseases associated with older adults
- …