28 research outputs found

    Differential Regulation of Cysteinyl Leukotriene Receptor Signaling by Protein Kinase C in Human Mast Cells

    Get PDF
    Cysteinyl leukotrienes (cys-LTs) are a group of lipid mediators that are potent bronchoconstrictors, powerful inducers of vascular leakage and potentiators of airway hyperresponsiveness. Cys-LTs play an essential role in asthma and are synthesized as well as activated in mast cells (MCs). Cys-LTs relay their effects mainly through two known GPCRs, CysLT1R and CysLT2R. Although protein kinase C (PKC) isoforms are implicated in the regulation of CysLT1R function, neither the role of PKCs in cys-LT-dependent MC inflammatory signaling nor the involvement of specific isoforms in MC function are known. Here, we show that PKC inhibition augmented LTD4 and LTE4-induced calcium influx through CysLT1R in MCs. In contrast, inhibition of PKCs suppressed c-fos expression as well MIP1β generation by cys-LTs. Interestingly, cys-LTs activated both PKCα and PKCε isoforms in MC. However, knockdown of PKCα augmented cys-LT mediated calcium flux, while knockdown of PKCε attenuated cys-LT induced c-fos expression and MIP1β generation. Taken together, these results demonstrate for the first time that cys-LT signaling downstream of CysLT1R in MCs is differentially regulated by two distinct PKCs which modulate inflammatory signals that have significant pathobiologic implications in allergic reactions and asthma pathology

    Primary Cilia Regulates the Directional Migration and Barrier Integrity of Endothelial Cells Through the Modulation of hsp27 Dependent Actin Cytoskeletal Organization

    Get PDF
    Cilia are mechanosensing organelles that communicate extracellular signals into intracellular responses. Altered functions of primary cilia play a key role in the development of various diseases including polycystic kidney disease. Here, we show that endothelial cells from the oak ridge polycystic kidney (Tg737orpk/orpk) mouse, with impaired cilia assembly, exhibit a reduction in the actin stress fibers and focal adhesions compared to wild type. In contrast, endothelial cells from polycystin-1 deficient mice (pkd1null/null), with impaired cilia function, display robust stress fibers and focal adhesion assembly. We found that the Tg737orpk/orpk cells exhibit impaired directional migration and endothelial cell monolayer permeability compared to the wild type and pkd1null/null cells. Finally, we found that the expression of heat shock protein 27 (hsp27) and the phosphorylation of FAK are down regulated in the Tg737orpk/orpk cells and overexpression of hsp27 restored both FAK phosphorylation and cell migration. Taken together, these results demonstrate that disruption of the primary cilia structure or function compromises the endothelium through the suppression of hsp27 dependent actin organization and focal adhesion formation, which may contribute to the vascular dysfunction in ciliopathies

    TRPV4 channel activation selectively inhibits tumor endothelial cell proliferation

    Get PDF
    Endothelial cell proliferation is a critical event during angiogenesis, regulated by both soluble factors and mechanical forces. Although the proliferation of tumor cells is studied extensively, little is known about the proliferation of tumor endothelial cells (TEC) and its contribution to tumor angiogenesis. We have recently shown that reduced expression of the mechanosensitive ion channel TRPV4 in TEC causes aberrant mechanosensitivity that result in abnormal angiogenesis. Here, we show that TEC display increased proliferation compared to normal endothelial cells (NEC). Further, we found that TEC exhibit high basal ERK1/2 phosphorylation and increased expression of proliferative genes important in the G1/S phase of the cell cycle. Importantly, pharmacological activation of TRPV4, with a small molecular activator GSK1016790A (GSK), significantly inhibited TEC proliferation, but had no effect on the proliferation of NEC or the tumor cells (epithelial) themselves. This reduction in TEC proliferation by TRPV4 activation was correlated with a decrease in high basal ERK1/2 phosphorylation. Finally, using a syngeneic tumor model revealed that TRPV4 activation, with GSK, significantly reduced endothelial cell proliferation in vivo. Our findings suggest that TRPV4 channels regulate tumor angiogenesis by selectively inhibiting tumor endothelial cell proliferation

    Paxillin Mediates Sensing of Physical Cues and Regulates Directional Cell Motility by Controlling Lamellipodia Positioning

    Get PDF
    Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5–10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax−/− and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax−/− cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax−/− and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices

    TRPV4 Mechanotransduction in Fibrosis

    No full text
    Fibrosis is an irreversible, debilitating condition marked by the excessive production of extracellular matrix and tissue scarring that eventually results in organ failure and disease. Differentiation of fibroblasts to hypersecretory myofibroblasts is the key event in fibrosis. Although both soluble and mechanical factors are implicated in fibroblast differentiation, much of the focus is on TGF-β signaling, but to date, there are no specific drugs available for the treatment of fibrosis. In this review, we describe the role for TRPV4 mechanotransduction in cardiac and lung fibrosis, and we propose TRPV4 as an alternative therapeutic target for fibrosis

    Correction

    No full text

    Effect of PKC inhibition on calcium signaling by LTD<sub>4</sub> and LTE<sub>4</sub> in LAD2 cells.

    No full text
    <p>Calcium transients from hMC (A) and LAD2 cells (B) with cys-LTs (500 nM) in presence or absence of PKC inhibitor, GFX (2 µM) (C) Quantitative analysis of calcium influx from A and B and the effect of MK571 (1 µM) on the enhanced calcium flux with GFX pre-treatment. The data shown are±SD of three experiments. The significance was tested using Student’s t-test as well as one-way ANOVA followed by Tukey post-hoc analysis. P<0.05. NS = non-significant.</p

    A model depicting PKC regulated cys-LT signaling in MCs.

    No full text
    <p>Hypothetical mechanism(s) depicting cys-LT-mediated signaling in MCs by PKCs. CysLT<sub>1</sub>R activation by LTD<sub>4</sub> or LTE<sub>4</sub> activates PKCα and PKCε. PKCα desensitize CysLT<sub>1</sub>R by phosphorylating the receptor and negatively regulating the calcium flux. On the other hand, PKCε activation by CysLT<sub>1</sub>R activates c-fos expression, MIP1β production. Cys-LTs also activate Erk and CREB independent of PKCs.</p
    corecore