167 research outputs found

    Cultured cell and transgenic mouse models for tau pathology linked to β-amyloid

    Get PDF
    AbstractThe two histopathological signatures of Alzheimer's disease (AD) are amyloid plaques and neurofibrillary tangles, prompting speculation that a causal relationship exists between the respective building blocks of these abnormal brain structures: the β-amyloid peptides (Aβ) and the neuron-enriched microtubule-associated protein called tau. Transgenic mouse models have provided in vivo evidence for such connections, and cultured cell models have allowed tightly controlled, systematic manipulation of conditions that influence links between Aβ and tau. The emerging evidence supports the view that amyloid pathology lies upstream of tau pathology in a pathway whose details remain largely mysterious. In this communication, we review and discuss published work about the Aβ–tau connection. In addition, we present some of our own previously unpublished data on the effects of exogenous Aβ on primary brain cultures that contain both neurons and glial cells. We report here that continuous exposure to 5 μM non-fibrillar Aβ40 or Aβ42 kills primary brain cells by apoptosis within 2–3 weeks, Aβ42 is more toxic and selective for neurons than Aβ40, and Aβ42, but not Aβ40, induces a transient increase in neurons that are positive for the AD-like PHF1 epitope. These findings demonstrate the greater potency of Aβ42 than Aβ40 at inducing tau pathology and programmed cell death, and corroborate and extend reports that tau-containing cells are more sensitive to Aβ peptides than cells that lack or express low levels of tau

    Amyloid Beta Annular Protofibrils in Cell Processes and Synapses Accumulate with Aging and Alzheimer-Associated Genetic Modification

    Get PDF
    Amyloid β (Aβ) annular protofibrils (APFs) have been described where the structure is related to that of β barrel pore-forming bacterial toxins and exhibits cellular toxicity. To investigate the relationship of Aβ APFs to disease and their ultrastructural localization in brain tissue, we conducted a pre-embedding immunoelectron microscopic study using anti-annular protofibril antiserum. We examined brain tissues of young- and old-aged amyloid precursor protein transgenic mice (APP23), neprilysin knockout APP23 mice, and nontransgenic littermates. αAPF-immunoreactions tended to be found (1) on plasma membranes and vesicles inside of cell processes, but not on amyloid fibrils, (2) with higher density due to aging, APP transgene, and neprilysin deficiency, and (3) with higher positive rate at synaptic compartments in aged APP23, especially in neprilysin knockout APP23 mice. These findings imply that APFs are distinct from amyloid fibrils, interact with biological membranes, and might be related to synaptic dysfunction in Alzheimer model mouse brains

    Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid

    Get PDF
    Background: Inflammation is associated with A beta pathology in Alzheimer's disease (AD) and transgenic AD models. Previously, it has been demonstrated that chronic stimulation of the immune response induces pro-inflammatory cytokines IL-1 beta and TNF-alpha which contribute to neurodegeneration. However, recent evidence has shown that inducing the adaptive immune response reduces A beta pathology and is neuroprotective. Low concentrations of IFN-gamma modulate the adaptive immune response by directing microglia to differentiate to antigen presenting cells. Our objective was to determine if exercise could induce a shift from the immune profile in aged (17-19 months) Tg2576 mice to a response that reduces A beta pathology. Methods: TG (n = 29) and WT (n = 27) mice were divided into sedentary (SED) and exercised (RUN) groups. RUN animals were provided an in-cage running wheel for 3 weeks. Tissue was harvested and hippocampus and cortex dissected out. Quantitative data was analyzed using 2 x 2 ANOVA and student's t-tests. Results: IL-1 beta and TNF-alpha were significantly greater in hippocampi from sedentary Tg2576 (TG(SED)) mice than in wildtype (WT(SED)) (p = 0.04, p = 0.006). Immune response proteins IFN-gamma and MIP-1 alpha are lower in TG(SED) mice than in WT(SED) (p = 0.03, p = 0.07). Following three weeks of voluntary wheel running, IL-1 beta and TNF-alpha decreased to levels indistinguishable from WT. Concurrently, IFN-gamma. and MIP-1 alpha increased in TG(RUN). Increased CD40 and MHCII, markers of antigen presentation, were observed in TG(RUN) animals compared to TG(SED), as well as CD11c staining in and around plaques and vasculature. Additional vascular reactivity observed in TG(RUN) is consistent with an alternative activation immune pathway, involving perivascular macrophages. Significant decreases in soluble A beta(40) (p = 0.01) and soluble fibrillar A beta (p = 0.01) were observed in the exercised transgenic animals. Conclusion: Exercise shifts the immune response from innate to an adaptive or alternative response. This shift in immune response coincides with a decrease in A beta in advanced pathological states

    Formation of soluble amyloid oligomers and amyloid fibrils by the multifunctional protein vitronectin

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The multifunctional protein vitronectin is present within the deposits associated with Alzheimer disease (AD), age-related macular degeneration (AMD), atherosclerosis, systemic amyloidoses, and glomerulonephritis. The extent to which vitronectin contributes to amyloid formation within these plaques, which contain misfolded, amyloidogenic proteins, and the role of vitronectin in the pathophysiology of the aforementioned diseases is currently unknown. The investigation of vitronectin aggregation is significant since the formation of oligomeric and fibrillar structures are common features of amyloid proteins.</p> <p>Results</p> <p>We observed vitronectin immunoreactivity in senile plaques of AD brain, which exhibited overlap with the amyloid fibril-specific OC antibody, suggesting that vitronectin is deposited at sites of amyloid formation. Of particular interest is the growing body of evidence indicating that soluble nonfibrillar oligomers may be responsible for the development and progression of amyloid diseases. In this study we demonstrate that both plasma-purified and recombinant human vitronectin readily form spherical oligomers and typical amyloid fibrils. Vitronectin oligomers are toxic to cultured neuroblastoma and retinal pigment epithelium (RPE) cells, possibly via a membrane-dependent mechanism, as they cause leakage of synthetic vesicles. Oligomer toxicity was attenuated in RPE cells by the anti-oligomer A11 antibody. Vitronectin fibrils contain a C-terminal protease-resistant fragment, which may approximate the core region of residues essential to amyloid formation.</p> <p>Conclusion</p> <p>These data reveal the propensity of vitronectin to behave as an amyloid protein and put forth the possibilities that accumulation of misfolded vitronectin may contribute to aggregate formation seen in age-related amyloid diseases.</p

    Tau-dependent microtubule disassembly initiated by prefibrillar β-amyloid

    Get PDF
    Alzheimer's Disease (AD) is defined histopathologically by extracellular β-amyloid (Aβ) fibrils plus intraneuronal tau filaments. Studies of transgenic mice and cultured cells indicate that AD is caused by a pathological cascade in which Aβ lies upstream of tau, but the steps that connect Aβ to tau have remained undefined. We demonstrate that tau confers acute hypersensitivity of microtubules to prefibrillar, extracellular Aβ in nonneuronal cells that express transfected tau and in cultured neurons that express endogenous tau. Prefibrillar Aβ42 was active at submicromolar concentrations, several-fold below those required for equivalent effects of prefibrillar Aβ40, and microtubules were insensitive to fibrillar Aβ. The active region of tau was localized to an N-terminal domain that does not bind microtubules and is not part of the region of tau that assembles into filaments. These results suggest that a seminal cell biological event in AD pathogenesis is acute, tau-dependent loss of microtubule integrity caused by exposure of neurons to readily diffusible Aβ
    corecore