16 research outputs found

    Utilizing a Global Network of Telescopes to Update the Ephemeris for the Highly Eccentric Planet HD 80606 b and to Ensure the Efficient Scheduling of JWST

    Get PDF
    The transiting planet HD 80606 b undergoes a 1000 fold increase in insolation during its 111 days orbit due to it being highly eccentric (e = 0.93). The planet's effective temperature increases from 400 to over 1400 K in a few hours as it makes a rapid passage to within 0.03 au of its host star during periapsis. Spectroscopic observations during the eclipse (which is conveniently oriented a few hours before periapsis) of HD 80606 b with the James Webb Space Telescope (JWST) are poised to exploit this highly variable environment to study a wide variety of atmospheric properties, including composition, chemical and dynamical timescales, and large scale atmospheric motions. Critical to planning and interpreting these observations is an accurate knowledge of the planet's orbit. We report on observations of two full-transit events: 2020 February 7 as observed by the TESS spacecraft and 2021 December 7-8 as observed with a worldwide network of small telescopes. We also report new radial velocity observations which, when analyzed with a coupled model to the transits, greatly improves the planet's orbital ephemeris. Our new orbit solution reduces the uncertainty in the transit and eclipse timing of the JWST era from tens of minutes to a few minutes. When combined with the planned JWST observations, this new precision may be adequate to look for non-Keplerian effects in the orbit of HD 80606 b

    Repurposing Avermectins and Milbemycins against Mycobacteroides abscessus and Other Nontuberculous Mycobacteria

    Get PDF
    Infections caused by nontuberculous mycobacteria (NTM) are increasing worldwide, resulting in a new global health concern. NTM treatment is complex and requires combinations of several drugs for lengthy periods. In spite of this, NTM disease is often associated with poor treatment outcomes. The anti-parasitic family of macrocyclic lactones (ML) (divided in two subfamilies: avermectins and milbemycins) was previously described as having activity against mycobacteria, including Mycobacterium tuberculosis, Mycobacterium ulcerans, and Mycobacterium marinum, among others. Here, we aimed to characterize the in vitro anti-mycobacterial activity of ML against a wide range of NTM species, including Mycobacteroides abscessus. For this, Minimum Inhibitory Concentration (MIC) values of eight ML were determined against 80 strains belonging to nine different NTM species. Macrocyclic lactones showed variable ranges of anti-mycobacterial activity that were compound and species-dependent. Milbemycin oxime was the most active compound, displaying broad-spectrum activity with MIC lower than 8 mg/L. Time kill assays confirmed MIC data and showed bactericidal and sterilizing activity of some compounds. Macrocyclic lactones are available in many formulations and have been extensively used in veterinary and human medicine with suitable pharmacokinetics and safety properties. This information could be exploited to explore repurposing of anti-helminthics for NTM therapy.Science, Faculty ofMicrobiology and Immunology, Department ofReviewedFacultyResearche
    corecore