923 research outputs found

    Energy Loss of Leading Hadrons and Direct Photon production in Evolving Quark-Gluon Plasma

    Full text link
    We calculate the nuclear modification factor of neutral pions and the photon yield at high p_T in central Au-Au collisions at RHIC (\sqrt{s}=200 GeV) and Pb-Pb collisions at the LHC (\sqrt{s}=5500 GeV). A leading-order accurate treatment of jet energy loss in the medium has been convolved with a physical description of the initial spatial distribution of jets and a (1+1) dimensional expansion. We reproduce the nuclear modification factor of pion R_{AA} at RHIC, assuming an initial temperature T_i=370 MeV and a formation time \tau_i=0.26 fm/c, corresponding to dN/dy=1260. The resulting suppression depends on the particle rapidity density dN/dy but weakly on the initial temperature. The jet energy loss treatment is also included in the calculation of high p_T photons. Photons coming from primordial hard N-N scattering are the dominant contribution at RHIC for p_T > 5 GeV, while at the LHC, the range 8<p_T<14 GeV is dominated by jet-photon conversion in the plasma.Comment: 21 pages, 16 figures. Discussions and references added. New figure includind photon dat

    Application of positive matrix factorization to on-road measurements for source apportionment of diesel- and gasoline-powered vehicle emissions in Mexico City

    Get PDF
    The goal of this research is to quantify diesel- and gasoline-powered motor vehicle emissions within the Mexico City Metropolitan Area (MCMA) using on-road measurements captured by a mobile laboratory combined with positive matrix factorization (PMF) receptor modeling. During the MCMA-2006 ground-based component of the MILAGRO field campaign, the Aerodyne Mobile Laboratory (AML) measured many gaseous and particulate pollutants, including carbon dioxide, carbon monoxide (CO), nitrogen oxides (NOx) [(NO subscript x)], benzene, toluene, alkylated aromatics, formaldehyde, acetaldehyde, acetone, ammonia, particle number, fine particulate mass (PM2.5) [(PM subscript 2.5)], and black carbon (BC). These serve as inputs to the receptor model, which is able to resolve three factors corresponding to gasoline engine exhaust, diesel engine exhaust, and the urban background. Using the source profiles, we calculate fuel-based emission factors for each type of exhaust. The MCMA's gasoline-powered vehicles are considerably dirtier, on average, than those in the US with respect to CO and aldehydes. Its diesel-powered vehicles have similar emission factors of NOx [NO subscript x] and higher emission factors of aldehydes, particle number, and BC. In the fleet sampled during AML driving, gasoline-powered vehicles are found to be responsible for 97% of total vehicular emissions of CO, 22% of NOx [NO subscript x], 95–97% of each aromatic species, 72–85% of each carbonyl species, 74% of ammonia, negligible amounts of particle number, 26% of PM2.5 [PM subscript 2.5], and 2% of BC; diesel-powered vehicles account for the balance. Because the mobile lab spent 17% of its time waiting at stoplights, the results may overemphasize idling conditions, possibly resulting in an underestimate of NOx [NO subscript x] and overestimate of CO emissions. On the other hand, estimates of the inventory that do not correctly account for emissions during idling are likely to produce bias in the opposite direction.The resulting fuel-based estimates of emissions are lower than in the official inventory for CO and NOx [NO subscript x] and higher for VOCs. For NOx [NO subscript x], the fuel-based estimates are lower for gasoline-powered vehicles but higher for diesel-powered ones compared to the official inventory. While conclusions regarding the inventory should be interpreted with care because of the small sample size, 3.5 h of driving, the discrepancies with the official inventory agree with those reported in other studies.National Science Foundation (U.S.) (Grant ATM-0528170)National Science Foundation (U.S.) (Grant ATM-0528227)United States. Dept. of Energy (Grant DE-FG02-05ER63982)United States. National Aeronautics and Space AdministrationMolina Center for Energy and the Environmen

    VLT spectroscopy of XTE J2123-058 during quiescence

    Get PDF
    We present VLT low resolution spectroscopy of the neutron star X-ray transient XTE J2123-058 during its quiescent state. Our data reveal the presence of a K7V companion which contributes 77 % to the total flux at 6300 A and orbits the neutron star at K_2 = 287 +/- 12 km/s. Contrary to other soft X-ray transients (SXTs), the Halpha emission is almost exactly in antiphase with the velocity curve of the optical companion. Using the light-center technique we obtain K_1 = 140 +/- 27 km/s and hence q=K_1/K_2=M_2/M_1= 0.49 +/- 0.10. This, combined with a previous determination of the inclination angle (i=73 +/- 4) yields M_1 = 1.55 +/- 0.31 Msun and M_2 = 0.76 +/- 0.22 Msun. M_2 agrees well with the observed spectral type. Doppler tomography of the Halpha emission shows a non-symmetric accretion disc distribution mimicking that seen in SW Sex stars. Although we find a large systemic velocity of -110 +/- 8 km/s this value is consistent with the galactic rotation velocity at the position of J2123-058, and hence a halo origin. The formation scenario of J2123-058 is still unresolved.Comment: 10 pages, 3 figures, accepted for publication in MNRAS with very minor change

    Comparison of emissions from on-road sources using a mobile laboratory under various driving and operational sampling modes

    Get PDF
    Mobile sources produce a significant fraction of the total anthropogenic emissions burden in large cities and have harmful effects on air quality at multiple spatial scales. Mobile emissions are intrinsically difficult to estimate due to the large number of parameters affecting the emissions variability within and across vehicles types. The MCMA-2003 Campaign in Mexico City has showed the utility of using a mobile laboratory to sample and characterize specific classes of motor vehicles to better quantify their emissions characteristics as a function of their driving cycles. The technique clearly identifies "high emitter" vehicles via individual exhaust plumes, and also provides fleet average emission rates. We have applied this technique to Mexicali during the Border Ozone Reduction and Air Quality Improvement Program (BORAQIP) for the Mexicali-Imperial Valley in 2005. We analyze the variability of measured emission ratios for emitted NOx [NO subscript x], CO, specific VOCs, NH3 [NH subscript 3], and some primary fine particle components and properties by deploying a mobile laboratory in roadside stationary sampling, chase and fleet average operational sampling modes. The measurements reflect various driving modes characteristic of the urban fleets. The observed variability for all measured gases and particle emission ratios is greater for the chase and roadside stationary sampling than for fleet average measurements. The fleet average sampling mode captured the effects of traffic conditions on the measured on-road emission ratios, allowing the use of fuel-based emission ratios to assess the validity of traditional "bottom-up" emissions inventories. Using the measured on-road emission ratios, we estimate CO and NOx [NO subscript x] mobile emissions of 175±62 and 10.4±1.3 metric tons/day, respectively, for the gasoline vehicle fleet in Mexicali. Comparisons with similar on-road emissions data from Mexico City indicated that fleet average NO emission ratios were around 20% higher in Mexicali than in Mexico City whereas HCHO and NH3 [NH subscript 3] emission ratios were higher by a factor of 2 in Mexico City than in Mexicali. Acetaldehyde emission ratios did not differ significantly whereas selected aromatics VOCs emissions were similar or smaller in Mexicali. Nitrogen oxides emissions for on-road heavy-duty diesel truck (HDDT) were measured near Austin, Texas, as well as in both Mexican cities, with NOy [NO subscript y] emission ratios in Austin < Mexico City < Mexicali.Mexico. Comisión Ambiental MetropolitanaNational Science Foundation (U.S.) (Grant ATM-0528227)Molina Center for Energy and the EnvironmentUniversity of Texas at AustinLatin American Scholarship Program of American Universitie

    Investigation of the correlation between odd oxygen and secondary organic aerosol in Mexico City and Houston

    Get PDF
    Many recent models underpredict secondary organic aerosol (SOA) particulate matter (PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much better understood, we investigate the correlation of odd-oxygen ([Ox]≡[O3]+[NO2]) [([O subscript x] ≡ [O subscript 3] + [NO subscript 2])] and the oxygenated component of organic aerosol (OOA), which is interpreted as a surrogate for SOA. OOA and Ox [O subscript x] measured in Mexico City in 2006 and Houston in 2000 were well correlated in air masses where both species were formed on similar timescales (less than 8 h) and not well correlated when their formation timescales or location differed greatly. When correlated, the ratio of these two species ranged from 30 μg [mu g] m−3/ppm [m superscript -3 / ppm] (STP) in Houston during time periods affected by large petrochemical plant emissions to as high as 160 μg [mu g] m−3/ppm [m superscript -3 / ppm] in Mexico City, where typical values were near 120 μg [mu g] m−3/ppm [m superscript -3 / ppm]. On several days in Mexico City, the [OOA]/[Ox] [[OOA] / O subscript x]] ratio decreased by a factor of ~2 between 08:00 and 13:00 local time. This decrease is only partially attributable to evaporation of the least oxidized and most volatile components of OOA; differences in the diurnal emission trends and timescales for photochemical processing of SOA precursors compared to ozone precursors also likely contribute to the observed decrease. The extent of OOA oxidation increased with photochemical aging. Calculations of the ratio of the SOA formation rate to the Ox [O subscript x] production rate using ambient VOC measurements and traditional laboratory SOA yields are lower than the observed [OOA]/[Ox] [[OOA] / O subscript x]] ratios by factors of 5 to 15, consistent with several other models' underestimates of SOA. Calculations of this ratio using emission factors for organic compounds from gasoline and diesel exhaust do not reproduce the observed ratio. Although not successful in reproducing the atmospheric observations presented, modeling P(SOA)/P(Ox) [P (SOA) / P (O subscript x)] can serve as a useful test of photochemical models using improved formulation mechanisms for SOA.National Science Foundation (U.S.) (Grant ATM-528227)National Science Foundation (U.S.) (Grant ATM-0528170)National Science Foundation (U.S.) (Grant ATM-0513116)National Science Foundation (U.S.) (Grant ATM-0449815)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DE-FGO2-05ER63982)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DEFGO2- 05ER63980)United States. Dept. of Energy. Office of Biological and Environmental Research. Atmospheric Science Program (Grant DE-FG02-08ER64627)United States. National Oceanic and Atmospheric Administration (Grant NA08OAR4310656

    Evidence for the η_b(1S) Meson in Radiative Υ(2S) Decay

    Get PDF
    We have performed a search for the η_b(1S) meson in the radiative decay of the Υ(2S) resonance using a sample of 91.6 × 10^6 Υ(2S) events recorded with the BABAR detector at the PEP-II B factory at the SLAC National Accelerator Laboratory. We observe a peak in the photon energy spectrum at E_γ = 609.3^(+4.6)_(-4.5)(stat)±1.9(syst) MeV, corresponding to an η_b(1S) mass of 9394.2^(+4.8)_(-4.9)(stat) ± 2.0(syst) MeV/c^2. The branching fraction for the decay Υ(2S) → γη_b(1S) is determined to be [3.9 ± 1.1(stat)^(+1.1)_(-0.9)(syst)] × 10^(-4). We find the ratio of branching fractions B[Υ(2S) → γη_b(1S)]/B[Υ(3S) → γη_b(1S)]= 0.82 ± 0.24(stat)^(+0.20)_(-0.19)(syst)

    Anemia of Inflammation Is Related to Cognitive Impairment among Children in Leyte, The Philippines

    Get PDF
    Past studies have demonstrated that iron deficiency anemia is related to deficits in cognitive fucntioning in children, and treating iron deficiency anemia with iron supplementation can improve cognition. Anemia of inflammation is another type of anemia caused by many diseases of lesser-developed countries including bacterial and parasitic infections. Anemia of inflammation is characterized by disordered iron metabolism, such that iron is sequestered in storage forms, preventing its use from tissues that require it. We hypothesized that decreased iron delivery to the brain in the context of anemia of inflammation might lead to decreased cognitive performance. This study found that children with anemia of inflammation had decreased cognitive performance in specific domains, compared to subjects with no anemia. True total body iron deficiency anemia was related to lower performance in the same domains. The only treatment option for anemia of inflammation is treatment of the underlying disease. Iron supplementation will not prevent cognitive deficits in children with anemia of inflammation. Interventions aimed towards maximizing the cognitive development of children in lesser-developed countries will need to focus on the prevention and treatment of bacterial and parasitic infections

    It's all about the children: a participant-driven photo-elicitation study of Mexican-origin mothers' food choices

    Get PDF
    Abstract Background There is a desperate need to address diet-related chronic diseases in Mexican-origin women, particularly for those in border region colonias (Mexican settlements) and other new destination communities in rural and non-rural areas of the U.S. Understanding the food choices of mothers, who lead food and health activities in their families, provides one way to improve health outcomes in Mexican-origin women and their children. This study used a visual method, participant-driven photo-elicitation, and grounded theory in a contextual study of food choices from the perspectives of Mexican-origin mothers. Methods Teams of trained promotoras (female community health workers from the area) collected all data in Spanish. Ten Mexican-origin mothers living in colonias in Hidalgo County, TX completed a creative photography assignment and an in-depth interview using their photographs as visual prompts and examples. English transcripts were coded inductively by hand, and initial observations emphasized the salience of mothers' food practices in their routine care-giving. This was explored further by coding transcripts in the qualitative data analysis software Atlas.ti. Results An inductive conceptual framework was created to provide context for understanding mothers' daily practices and their food practices in particular. Three themes emerged from the data: 1) a mother's primary orientation was toward her children; 2) leveraging resources to provide the best for her children; and 3) a mother's daily food practices kept her children happy, healthy, and well-fed. Results offer insight into the intricate meanings embedded in Mexican-origin mothers' routine food choices. Conclusions This paper provides a new perspective for understanding food choice through the eyes of mothers living in the colonias of South Texas -- one that emphasizes the importance of children in their routine food practices and the resilience of the mothers themselves. Additional research is needed to better understand mothers' perspectives and food practices with larger samples of women and among other socioeconomic groups

    BIOFRAG: A new database for analysing BIOdiversity responses to forest FRAGmentation

    Get PDF
    Habitat fragmentation studies are producing inconsistent and complex results across which it is nearly impossible to synthesise. Consistent analytical techniques can be applied to primary datasets, if stored in a flexible database that allows simple data retrieval for subsequent analyses. Method: We developed a relational database linking data collected in the field to taxonomic nomenclature, spatial and temporal plot attributes and further environmental variables (e.g. information on biogeographic region. Typical field assessments include measures of biological variables (e.g. presence, abundance, ground cover) of one species or a set of species linked to a set of plots in fragments of a forested landscape. Conclusion: The database currently holds records of 5792 unique species sampled in 52 landscapes in six of eight biogeographic regions: mammals 173, birds 1101, herpetofauna 284, insects 2317, other arthropods: 48, plants 1804, snails 65. Most species are found in one or two landscapes, but some are found in four. Using the huge amount of primary data on biodiversity response to fragmentation becomes increasingly important as anthropogenic pressures from high population growth and land demands are increasing. This database can be queried to extract data for subsequent analyses of the biological response to forest fragmentation with new metrics that can integrate across the components of fragmented landscapes. Meta-analyses of findings based on consistent methods and metrics will be able to generalise over studies allowing inter-comparisons for unified answers. The database can thus help researchers in providing findings for analyses of trade-offs between land use benefits and impacts on biodiversity and to track performance of management for biodiversity conservation in human-modified landscapes.Fil: Pfeifer, Marion. Imperial College London; Reino UnidoFil: Lefebvre, Veronique. Imperial College London; Reino UnidoFil: Gardner, Toby A.. Stockholm Environment Institute; SueciaFil: Arroyo Rodríguez, Víctor. Universidad Nacional Autónoma de México; MéxicoFil: Baeten, Lander. University of Ghent; BélgicaFil: Banks Leite, Cristina. Imperial College London; Reino UnidoFil: Barlow, Jos. Lancaster University; Reino UnidoFil: Betts, Matthew G.. State University of Oregon; Estados UnidosFil: Brunet, Joerg. Swedish University of Agricultural Sciences; SueciaFil: Cerezo Blandón, Alexis Mauricio. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Métodos Cuantitativos y Sistemas de Información; ArgentinaFil: Cisneros, Laura M.. University of Connecticut; Estados UnidosFil: Collard, Stuart. Nature Conservation Society of South Australia; AustraliaFil: D´Cruze, Neil. The World Society for the Protection of Animals; Reino UnidoFil: Da Silva Motta, Catarina. Ministério da Ciência, Tecnologia, Inovações. Instituto Nacional de Pesquisas da Amazônia; BrasilFil: Duguay, Stephanie. Carleton University; CanadáFil: Eggermont, Hilde. University of Ghent; BélgicaFil: Eigenbrod, Félix. University of Southampton; Reino UnidoFil: Hadley, Adam S.. State University of Oregon; Estados UnidosFil: Hanson, Thor R.. No especifíca;Fil: Hawes, Joseph E.. University of East Anglia; Reino UnidoFil: Heartsill Scalley, Tamara. United State Department of Agriculture. Forestry Service; Puerto RicoFil: Klingbeil, Brian T.. University of Connecticut; Estados UnidosFil: Kolb, Annette. Universitat Bremen; AlemaniaFil: Kormann, Urs. Universität Göttingen; AlemaniaFil: Kumar, Sunil. State University of Colorado - Fort Collins; Estados UnidosFil: Lachat, Thibault. Swiss Federal Institute for Forest; SuizaFil: Lakeman Fraser, Poppy. Imperial College London; Reino UnidoFil: Lantschner, María Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Patagonia Norte. Estación Experimental Agropecuaria San Carlos de Bariloche; ArgentinaFil: Laurance, William F.. James Cook University; AustraliaFil: Leal, Inara R.. Universidade Federal de Pernambuco; BrasilFil: Lens, Luc. University of Ghent; BélgicaFil: Marsh, Charles J.. University of Leeds; Reino UnidoFil: Medina Rangel, Guido F.. Universidad Nacional de Colombia; ColombiaFil: Melles, Stephanie. University of Toronto; CanadáFil: Mezger, Dirk. Field Museum of Natural History; Estados UnidosFil: Oldekop, Johan A.. University of Sheffield; Reino UnidoFil: Overal , Williams L.. Museu Paraense Emílio Goeldi. Departamento de Entomologia; BrasilFil: Owen, Charlotte. Imperial College London; Reino UnidoFil: Peres, Carlos A.. University of East Anglia; Reino UnidoFil: Phalan, Ben. University of Southampton; Reino UnidoFil: Pidgeon, Anna Michle. University of Wisconsin; Estados UnidosFil: Pilia, Oriana. Imperial College London; Reino UnidoFil: Possingham, Hugh P.. Imperial College London; Reino Unido. The University Of Queensland; AustraliaFil: Possingham, Max L.. No especifíca;Fil: Raheem, Dinarzarde C.. Royal Belgian Institute of Natural Sciences; Bélgica. Natural History Museum; Reino UnidoFil: Ribeiro, Danilo B.. Universidade Federal do Mato Grosso do Sul; BrasilFil: Ribeiro Neto, Jose D.. Universidade Federal de Pernambuco; BrasilFil: Robinson, Douglas W.. State University of Oregon; Estados UnidosFil: Robinson, Richard. Manjimup Research Centre; AustraliaFil: Rytwinski, Trina. Carleton University; CanadáFil: Scherber, Christoph. Universität Göttingen; AlemaniaFil: Slade, Eleanor M.. University of Oxford; Reino UnidoFil: Somarriba, Eduardo. Centro Agronómico Tropical de Investigación y Enseñanza; Costa RicaFil: Stouffer, Philip C.. State University of Louisiana; Estados UnidosFil: Struebig, Matthew J.. University of Kent; Reino UnidoFil: Tylianakis, Jason M.. University College London; Estados Unidos. Imperial College London; Reino UnidoFil: Teja, Tscharntke. Universität Göttingen; AlemaniaFil: Tyre, Andrew J.. Universidad de Nebraska - Lincoln; Estados UnidosFil: Urbina Cardona, Jose N.. Pontificia Universidad Javeriana; ColombiaFil: Vasconcelos, Heraldo L.. Universidade Federal de Uberlandia; BrasilFil: Wearn, Oliver. Imperial College London; Reino Unido. The Zoological Society of London; Reino UnidoFil: Wells, Konstans. University of Adelaide; AustraliaFil: Willig, Michael R.. University of Connecticut; Estados UnidosFil: Wood, Eric. University of Wisconsin; Estados UnidosFil: Young, Richard P.. Durrell Wildlife Conservation Trust; Reino UnidoFil: Bradley, Andrew V.. Imperial College London; Reino UnidoFil: Ewers, Robert M.. Imperial College London; Reino Unid
    corecore