377 research outputs found

    Fine Structure of the Motile Cells and Flagella in a Member of the Actinoplanaceae (Actinomycetales)

    Get PDF
    The motile cells (sporangiospores) of an undescribed member of the Actinoplanaceae are studied by electron microscopy as shadowed, negatively stained, and sectioned preparations. The rod-shaped spores exhibit a typically bacterial internal structure. However, a single tubular structure (rhapidosome) is positioned just inside the site of flagellar attachment of each spore and is oriented perpendicular to the direction of the flagella. Flagella arise from basal discs and pass through the plasma membrane and the two-layered cell wall to become associated with other flagella to function as a posteriorly directed unit. Each flagellum consists of a helical band or ribbon which dissociates into 5 or 6 subfibrils. Original version published in Proceedings of the National Academy of Sciences of the United States

    Discovery of a 500 pc shell in the nucleus of Centaurus A

    Full text link
    Spitzer Space Telescope mid-infrared images of the radio galaxy Centaurus A reveal a shell-like, bipolar, structure 500 pc to the north and south of the nucleus. This shell is seen in 5.8, 8.0 and 24 micron broad-band images. Such a remarkable shell has not been previously detected in a radio galaxy and is the first extragalactic nuclear shell detected at mid-infrared wavelengths. We estimate that the shell is a few million years old and has a mass of order million solar masses. A conservative estimate for the mechanical energy in the wind driven bubble is 10^53 erg. The shell could have created by a small few thousand solar mass nuclear burst of star formation. Alternatively, the bolometric luminosity of the active nucleus is sufficiently large that it could power the shell. Constraints on the shell's velocity are lacking. However, if the shell is moving at 1000 km/s then the required mechanical energy would be 100 times larger.Comment: submitted to ApJ Letter

    An Imaging Fabry-Perot System for the Robert Stobie Spectrograph on the Southern African Large Telescope

    Full text link
    We present the design of the Fabry-Perot system of the Robert Stobie Spectrograph on the 10-meter class Southern African Large Telescope and its characterization as measured in the laboratory. This system provides spectroscopic imaging at any desired wavelength spanning a bandpass 430 - 860 nm, at four different spectral resolving powers ranging from 300 to 9000. Our laboratory tests revealed a wavelength dependence of the etalon gap and parallelism with a maximum variation between 600 - 720 nm that arises because of the complex structure of the broadband multi-layer dielectric coatings. We also report an unanticipated optical effect of this multi-layer coating structure that produces a significant, and wavelength dependent, change in the apparent shape of the etalon plates. This change is caused by two effects: the physical non-uniformities or thickness variations in the coating layers, and the wavelength dependence of the phase change upon refection that can amplify these non-uniformities. We discuss the impact of these coating effects on the resolving power, finesse, and throughput of the system. This Fabry-Perot system will provide a powerful tool for imaging spectroscopy on one of the world's largest telescopes.Comment: 17 pages, 14 figures, accepted for publication in The Astronomical Journa
    • …
    corecore