28 research outputs found

    Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting NbTi Cable Strands

    Get PDF
    The Rutherford-type superconducting NbTi cables of the LHC accelerator are currently manufactured by six industrial companies. As a part of the acceptance tests, the Residual Resistivity Ratio (RRR) of superconducting strands is systematically measured on virgin strands to qualify the strands before cabling and on extracted strands to qualify the cables and to check the final heat treatment (controlled oxidation to control interstrand resistance). More than 12000 samples of virgin and extracted strands have been measured during last five years. Results show good correlation with the measurements done by the companies and reflect well the technological process of cable production (strand annealing, cabling, cable heat treatment). This paper presents a description of the RRR-test station and the measurement procedure, the summary of the results over all suppliers and finally the correlation between RRR-values of the cables and the magnets

    Critical Current Test Facilities for LHC Superconducting NbTi Cable Strands

    Get PDF
    The Rutherford-type superconducting Cu/NbTi cables of the LHC accelerator are currently mass-produced by a few industrial firms. As a part of the acceptance tests, the critical current of superconducting multifilamentary wires is systematically measured on virgin strands to qualify the wires and on extracted strands to qualify the cables. For this purpose, four test stations are in operation at CERN to measure the critical current of strands at both 4.2 K and 1.9 K in magnetic fields in the 6-11 T range. The measurement setup and procedures of these facilities are reported in this article. The quality of the critical current test is guaranteed by supervising the SPC (Statistical Process Control) charts of a reference sample. The measurement repeatability and reproducibility of the stations are found to be excellent. Moreover, the measured critical current of a strand is found to be almost independent of the test station in which the measurement is performed

    Status of the LHC Superconducting Cable Mass Production

    Get PDF
    Six contracts have been placed with industrial companies for the production of 1200 tons of the superconducting (SC) cables needed for the main dipoles and quadrupoles of the Large Hadron Collider (LHC). In addition, two contracts have been placed for the supply of 470 tons of NbTi and 26 tons of Nb sheets. The main characteristic of the specification is that it is functional. This means that the physical, mechanical and electrical properties of strands and cables are specified without defining the manufacturing processes. Facilities for the high precision measurements of the wire and cable properties have been implemented at CERN, such as strand and cable critical current, copper to superconductor ratio, interstrand resistance, magnetisation, RRR at 4.2 K and 1.9 K. The production has started showing that the highly demanding specifications can be fulfilled. This paper reviews the organisation of the contracts, the test facilities installed at CERN, the various types of measurements and the results of the main physical properties obtained on the first batches. The status of the deliveries is presented

    Methods to detect faulty splices in the superconducting magnet system of the LHC

    Get PDF
    The incident of 19 September 2008 at the LHC was caused by a faulty inter-magnet splice of about 200 nΩ resistance. Cryogenic and electrical techniques have been developed to detect other abnormal splices, either between or inside the magnets. The existing quench protection system can be used to detect internal splices with R>20 nΩ. Since this system does not cover the bus between magnets, the cryogenic system is used to measure the rate of temperature rise due to ohmic heating. Accuracy of a few mK/h, corresponding to a few Watts, has been achieved, allowing detection of excess resistance, if it is more than 40 nΩ in a cryogenic subsector (two optical cells). Follow-up electrical measurements are made in regions identified by the cryogenic system. These techniques have detected two abnormal internal magnet splices of 100 nΩ and 50 nΩ respectively. In 2009, this ad hoc system will be replaced with a permanent one to monitor all splices at the nΩ level

    Performance of the Main Dipole Magnet Circuits of the LHC during Commissioning

    Get PDF
    During hardware commissioning of the Large Hadron Collider (LHC), 8 main dipole circuits are tested at 1.9 K and up to their nominal current. Each dipole circuit contains 154 magnets of 15 m length, and has a total stored energy of up to 1.3 GJ. All magnets are wound from Nb-Ti superconducting Rutherford cables, and contain heaters to quickly force the transition to the normal conducting state in case of a quench, and hence reduce the hot spot temperature. In this paper the performance of the first three of these circuits is presented, focussing on quench detection, heater performance, operation of the cold bypass diodes, and magnet-to-magnet quench propagation. The results as measured on the entire circuits will be compared to the test results obtained during the reception tests of the individual magnets

    Performance of the Superconducting Corrector Magnet Circuits during the Commissioning of the LHC

    Get PDF
    The LHC is a complex machine requiring more than 7400 superconducting corrector magnets distributed along a circumference of 26.7 km. These magnets are powered in 1446 different electrical circuits at currents ranging from 60 A up to 600 A. Among the corrector circuits the 600 A corrector magnets form the most diverse and differentiated group. All together, about 60000 high current connections had to be made. A fault in a circuit or one of the superconducting connections would have severe consequences for the accelerator operation. All magnets are wound from various types of Nb-Ti superconducting strands, and many contain parallel protection resistors to by-pass the current still flowing in the other magnets of the same circuit when they quench. In this paper the performance of these magnet circuits is presented, focussing on the quench behaviour of the magnets. Quench detection and the performance of the electrical interconnects will be dealt with. The results as measured on the entire circuits are compared to the test results obtained at the reception of the individual magnets

    The Enhancement of the Magnetization of Twisted Superconducting Strands due to the Distortion of the Filament Shape

    No full text
    Magnetization measurement is one of acceptance criteria for strands in the LHC (Large Hadron Collider) cable production. In a magnetic field, the superconducting filaments become magnetized due to the persistent currents and generate field errors in magnets. Over 3500 strands measured, we have observed an enhancement of magnetization for strands with filaments strongly deformed. Generally the strands are designed to have filaments with a circular cross-section, however these filaments can be deformed during the fabrication process. This paper presents detailed magnetization measurements on samples with increasing filament deformation and develops a simple theory, which enables to calculate the increase of the magnetization of independent twisted filaments as function of the roundness of the filaments and compare it with measurements. However we show that interfilament coupling is important and increases with filament deformation

    Splice Resistance Measurements in the LHC Main Superconducting Magnet Circuits by the New Quench Protection System

    No full text
    The interconnections between the LHC main magnets are made of soldered joints (splices) of two superconducting cables stabilized by a copper bus-bar. After the 2008 LHC incident, caused by a defective interconnection, a new layer of high resolution magnet circuit quench protection (nQPS) has been developed and integrated with the existing systems. It allowed mapping of the resistances of all superconducting splices during the 2009 commissioning campaign. Since April 2010, when the LHC was successfully restarted at 3.5 TeV, every bus bar interconnection is constantly monitored by the nQPS electronics. The acquired data are saved to the LHC Logging Database. The paper will briefly describe the data analysis method and will present the results from the two years of resistance measurements. Although no splice was found with resistance higher than 3.3 n and no significant degradation in time was observed so far, the monitoring of splices will stay active till the end of LHC 4 TeV run. The detected outliers will be repaired during the Splice Consolidation Campaign in 2013-2014

    Performance of the Protection System for Superconducting Circuits during LHC Operation

    No full text
    The protection system for superconducting magnets and bus-bars is an essential part of the LHC machine protection and ensures the integrity of substantial elements of the accelerator. Due to the large amount of hardwired and software interlock channels the dependability of the system is a critical parameter for the successful operation of the LHC

    LHC Beam Energy in 2012

    No full text
    The interconnections between the LHC main magnets are made of soldered joints (splices) of two superconducting cables stabilized by a copper bus bar. The measurements performed in 2009 in the whole machine, in particular in sector 3-4 during the repair after the 2008 accident, demonstrated that there is a significant fraction of defective copper bus bar joints in the machine. In this paper, the limiting factors for operating the LHC at higher energies with defective 13 kA bus bar joints are briefly reviewed. The experience gained during the 2011 run, including the quench statistics and dedicated quench propagation tests impacting on maximum safe energy are presented. The impact of the by-pass diode contact resistance issue is also addressed. Finally, a proposal for running at the highest possible safe energy compatible with the pre-defined risk level is presented
    corecore