36 research outputs found

    Immune-Complex Mimics as a Molecular Platform for Adjuvant-Free Vaccine Delivery

    Get PDF
    Protein-based vaccine development faces the difficult challenge of finding robust yet non-toxic adjuvants suitable for humans. Here, using a molecular engineering approach, we have developed a molecular platform for generating self-adjuvanting immunogens that do not depend on exogenous adjuvants for induction of immune responses. These are based on the concept of Immune Complex Mimics (ICM), structures that are formed between an oligomeric antigen and a monoclonal antibody (mAb) to that antigen. In this way, the roles of antigens and antibodies within the structure of immune complexes are reversed, so that a single monoclonal antibody, rather than polyclonal sera or expensive mAb cocktails can be used. We tested this approach in the context of Mycobacterium tuberculosis (MTB) infection by linking the highly immunogenic and potentially protective Ag85B with the oligomeric Acr (alpha crystallin, HspX) antigen. When combined with an anti-Acr monoclonal antibody, the fusion protein formed ICM which bound to C1q component of the complement system and were readily taken up by antigen-presenting cells in vitro. ICM induced a strong Th1/Th2 mixed type antibody response, which was comparable to cholera toxin adjuvanted antigen, but only moderate levels of T cell proliferation and IFN-γ secretion. Unfortunately, the systemic administration of ICM did not confer statistically significant protection against intranasal MTB challenge, although a small BCG-boosting effect was observed. We conclude that ICM are capable of inducing strong humoral responses to incorporated antigens and may be a suitable vaccination approach for pathogens other than MTB, where antibody-based immunity may play a more protective role

    The human immunodeficiency virus antigen Nef forms protein bodies in leaves of transgenic tobacco when fused to zeolin

    Get PDF
    Protein bodies (PB) are stable polymers naturally formed by certain seed storage proteins within the endoplasmic reticulum (ER). The human immunodeficiency virus negative factor (Nef) protein, a potential antigen for the development of an anti-viral vaccine, is highly unstable when introduced into the plant secretory pathway, probably because of folding defects in the ER environment. The aim of this study was to promote the formation of Nef-containing PB in tobacco (Nicotiana tabacum) leaves by fusing the Nef sequence to the N-terminal domains of the maize storage protein γ-zein or to the chimeric protein zeolin (which efficiently forms PB and is composed of the vacuolar storage protein phaseolin fused to the N-terminal domains of γ-zein). Protein blots and pulse–chase indicate that fusions between Nef and the same γ-zein domains present in zeolin are degraded by ER quality control. Consistently, a mutated zeolin, in which wild-type phaseolin was substituted with a defective version known to be degraded by ER quality control, is unstable in plant cells. Fusion of Nef to the entire zeolin sequence instead allows the formation of PB detectable by electron microscopy and subcellular fractionation, leading to zeolin–Nef accumulation higher than 1% of total soluble protein, consistently reproduced in independent transgenic plants. It is concluded that zeolin, but not its γ-zein portion, has a positive dominant effect over ER quality control degradation. These results provide insights into the requirements for PB formation and avoidance of quality-control degradation, and indicate a strategy for enhancing foreign protein accumulation in plants

    Base Burn Projectile French Trajectory Model

    No full text

    Characterization of the conformational epitope of guy's 13, a monoclonal antibody that prevents Streptococcus mutans colonization in humans

    No full text
    Guy's 13 is a mouse monoclonal antibody which recognizes streptococcal antigen I/II (SA I/II), a major cell surface glycoprotein of Streptococcus mutans. In a number of clinical trials, this antibody has been shown to prevent colonization in the human oral cavity. The aim of this study was to identify the SA I/II epitope recognized by Guy's 13. The data suggest that the epitope is conformational, delimited by two noncontiguous regions of the antigen: residues 45 to 457, within the N-terminal half of SA I/II, and residues 816 to 983, within the C-terminal half. In fluid-phase immunoassays a strict requirement for the simultaneous presence of both regions was demonstrated for antibody binding. Furthermore, these two regions of SA I/II were shown to have the ability to interact with each other in the absence of Guy's 13 antibody, suggesting that the normal conformation of SA I/II might be determined by the interaction of these two regions

    A peptide mimic of a protective epitope of respiratory syncytial virus selected from a combinatorial library induces virus-neutralizing antibodies and reduces viral load in vivo

    No full text
    Respiratory syncytial virus (RSV) is the most important cause of bronchiolitis and pneumonia in infants and young children worldwide. As yet, there is no effective vaccine against RSV infection, and previous attempts to develop a formalin-inactivated vaccine resulted in exacerbated disease in recipients subsequently exposed to the virus. In the work described here, a combinatorial solid-phase peptide library was screened with a protective monoclonal antibody (MAb 19) to identify peptide mimics (mimotopes) of a conserved and conformationally-determined epitope of RSV fusion (F) protein. Two sequences identified (S1 [HWYISKPQ] and S2 [HWYDAEVL]) reacted specifically with MAb 19 when they were presented as solid-phase peptides. Furthermore, after amino acid substitution analyses, three sequences derived from S1 (S1S [HWSISKPQ], S1K [KWYISKPQ], and S1P [HPYISKPQ]), presented as multiple antigen peptides (MAPs), also showed strong reactivity with MAb 19. The affinity constants of the binding of MAb 19, determined by surface plasmon resonance analyses, were 1.19 x 109 and 4.93 x 109 M-1 for S1 and S1S, respectively. Immunization of BALB/c mice with these mimotopes, presented as MAPs, resulted in the induction of anti-peptide antibodies that inhibited the binding of MAb 19 to RSV and neutralized viral infection in vitro, with titers equivalent to those in sera from RSV-infected animals. Following RSV challenge of S1S mimotope-immunized mice, a 98.7% reduction in the titer of virus in the lungs was observed. Furthermore, there was a greatly reduced cell infiltration in the lungs of immunized mice compared to that in controls. These results indicate the potential of peptide mimotopes to protect against RSV infection without exacerbating pulmonary pathology

    Peptide mapping of a novel discontinuous epitope of the major surface adhesin from Streptococcus mutans

    No full text

    Peptide mimics of a conformationally constrained protective epitopes of respiratory syncytial virus fusion protein

    No full text
    Aims: To identify peptides that mimic (mimotopes) conformational and protective epitopes of RSV fusion protein and to assess their efficacy as immunogens and potential vaccines. Material and methods: An 8-mer solid- phase (TG resin) library was screened with a neutralising and protective RSV fusion protein specific monoclonal antibodies (Mab-19). After selection of positive beads, reactive sequences were identified by microsequencing and 8- mer peptides were synthesised. Improvement of binding was analysed by amino acid replacement using the SPOTs method. Results: Mabs were not able to bind to the free and soluble peptides, nor did these peptides induce anti-RSV specific antibodies. However, several peptides re-synthesised on a TG resin (to produce de-protected 8-mer peptides linked to the resin) or as SPOTs reacted specifically. Therefore it was critical to be able to reproduce this conformation in order to use these mimotopes as immunogens and potential vaccines. Using C-terminal constrained versions of the mimotopes, strong binding of one of the Mabs to the peptides was demonstrated by surface- plasmon resonance. Immunisation of Balb/c mice with these peptide-mimics produced anti-sera that: (1) reacted specifically with RSV; (2) inhibited the binding of the Mab to the virus; (3) neutralised RSV in vitro with high titres (range: 80-640); and (4) reduce significantly the vital load in the lungs of mice challenged with RSV (P < 0.01). Conclusions: This report demonstrates for the first time that: (1) a protective epitope of the conserved RSV fusion protein can be mimicked by synthetic peptides: and (2) immunisations with these mimotopes induced specific anti-RSV neutralising antibodies and reduced vital load in vivo. These results represent a novel concept for the development of a vaccine against RSV
    corecore