19 research outputs found

    Role of the cooling rate in the stability of the superconducting phase of (TMTSF)_2ClO_4

    Full text link
    The noncentrosymmetric ClO4_4 anions of the organic superconductor (TMTSF)2_2ClO4_4 order below 24K. The size of domains where the anions are ordered is substantially dependent on the cooling rate which is a key parameter for the stability of the low temperature electronic ground states. We study the effect of the cooling rate on the SC phase within a self consistent approach in the framework of the time dependent Ginzburg-Landau theory taking into account the superconducting fluctuations. We derive the superconducting transition temperature which is found to decrease with increasing cooling rate in agreement with recent experimental data.Comment: 5 pages including one figure. Published online in Europhysics Letter

    Disorder-induced superconductivity in ropes of carbon nanotubes

    Full text link
    We study the interplay between disorder and superconductivity in a rope of metallic carbon nanotubes. Based on the time dependent Ginzburg Landau theory, we derive the superconducting transition temperature Tc_c taking into account the critical superconducting fluctuations which are expected to be substantially strong in such low dimensional systems. Our results indicate that, contrary to what is expected, Tc_c increases by increasing the amount of disorder. We argue that this behavior is due to the dynamics of the tubes which reduces the drastic effect of the local disorder on superconductivity by enhancing the intertube Josephson tunneling. We also found that Tc_c is enhanced as the effective dimensionality of the rope increases by increasing the number N of the tubes forming the rope. However, Tc_c tends to saturate for large values of N, expressing the establishment of a bulk three dimensional (3D) superconducting order.Comment: 9 pages, 4 figur

    Renormalization of the hopping parameters in quasi-one-dimensional conductors in the presence of a magnetic field

    Get PDF
    Abstract. We consider the competition between the one dimensionalization effect due to a magnetic field and the hopping parameters in quasi-one-dimensional conductors. Our study is based on a perturbative renormalization group method with three cut-off parameters, the bandwidth E0, the 1D-2D crossover temperature T * 1 , which is related to the hopping process t1, and the magnetic energy ωc. We have found that the renormalized crossover temperatures T * 1 and T * 2 , at which the respectively hopping processes t1 and t2 become coherent, are reduced compared to the bare values as the field is increased. We discuss the consequences of these renormalization effects on the temperature-field phase diagram of the organic conductors. PAC

    Antiferromagnetic Excitations and Van Hove Singularities in YBa2_2Cu3_3O6+x_{6+x}

    Full text link
    We show that in quasi-two-dimensional dd-wave superconductors Van Hove singularities close to the Fermi surface lead to novel magnetic quasi-particle excitations. We calculate the temperature and doping dependence of dynamical magnetic susceptibility for YBCO and show that the proposed excitations are in agreement with inelastic neutron scattering experiments. In addition, the values of the gap parameter and in-plane antiferromagnetic coupling are much smaller than usually believed.Comment: REVTeX, 4 pages + 3 PostScript (compressed) figures; to appear in Phys. Rev. B (Rap. Comm.

    Field-induced confinement in (TMTSF)2ClO4 under accurately aligned magnetic fields

    Full text link
    We present transport measurements along the least conducting c direction of the organic superconductor (TMTSF)2ClO4, performed under an accurately aligned magnetic field in the low temperature regime. The experimental results reveal a two-dimensional confinement of the carriers in the (a,b) planes which is governed by the magnetic field component along the b' direction. This 2-D confinement is accompanied by a metal-insulator transition for the c axis resistivity. These data are supported by a quantum mechanical calculation of the transverse transport taking into account in self consistent treatment the effect of the field on the interplane Green function and on the intraplane scattering time

    Competing phases in the high field phase diagram of (TMTSF)2_2ClO4_4

    Full text link
    A model is presented for the high field phase diagram of (TMTSF)2_2ClO4_4, taking into account the anion ordering, which splits the Fermi surface in two bands. For strong enough field, the largest metal-SDW critical temperature corresponds to the N=0 phase, which originates from two intraband nesting processes. At lower temperature, the competition between these processes puts at disadvantage the N=0 phase vs. the N=1 phase, which is due to interband nesting. A first order transition takes then place from the N=0 to N=1 phase. We ascribe to this effect the experimentally observed phase diagrams.Comment: 5 pages, 3 figures (to appear in Phys. Rev. Lett.

    Inhomogeneous superconductivity in organic conductors: role of disorder and magnetic field

    Full text link
    Several experimental studies have shown the presence of spatially inhomogeneous phase coexistence of superconducting and non superconducting domains in low dimensional organic superconductors. The superconducting properties of these systems are found to be strongly dependent on the amount of disorder introduced in the sample regardless of its origin. The suppression of the superconducting transition temperature TcT_c shows clear discrepancy with the result expected from the Abrikosov-Gor'kov law giving the behavior of TcT_c with impurities. Based on the time dependent Ginzburg-Landau theory, we derive a model to account for the striking feature of TcT_c in organic superconductors for different types of disorder by considering the segregated texture of the system. We show that the calculated TcT_c quantitatively agrees with experiments. We also focus on the role of superconducting fluctuations on the upper critical fields Hc2H_{c2} of layered superconductors showing slab structure where superconducting domains are sandwiched by non-superconducting regions. We found that Hc2H_{c2} may be strongly enhanced by such fluctuations.Comment: to appear in Journal of Physics: Condensed Matte

    Neutron scattering and superconducting order parameter in YBa2Cu3O7

    Full text link
    We discuss the origin of the neutron scattering peak at 41 meV observed in YBa2_2Cu3_3O7_7 below TcT_c. The peak may occur due to spin-flip electron excitations across the superconducting gap which are enhanced by the antiferromagnetic interaction between Cu spins. In this picture, the experiment is most naturally explained if the superconducting order parameter has ss-wave symmetry and opposite signs in the bonding and antibonding electron bands formed within a Cu2_2O4_4 bilayer.Comment: In this version, only few minor corrections and the update of references were done in order to make perfect correspondence with the published version. RevTeX, psfig, 5 pages, and 3 figure

    Superconductivity, Spin Density Wave and Field Induced Spin Density Wave versus anion ordering in the (TMTSF) 2 ClO 4 salt

    No full text
    We study the effect of the ClO4 anion ordering on the superconducting (SC
    corecore