44 research outputs found

    Disruption in murine Eml1 perturbs retinal lamination during early development.

    Get PDF
    During mammalian development, establishing functional neural networks in stratified tissues of the mammalian central nervous system depends upon the proper migration and positioning of neurons, a process known as lamination. In particular, the pseudostratified neuroepithelia of the retina and cerebrocortical ventricular zones provide a platform for progenitor cell proliferation and migration. Lamination defects in these tissues lead to mispositioned neurons, disrupted neuronal connections, and abnormal function. The molecular mechanisms necessary for proper lamination in these tissues are incompletely understood. Here, we identified a nonsense mutation in the Eml1 gene in a novel murine model, tvrm360, displaying subcortical heterotopia, hydrocephalus and disorganization of retinal architecture. In the retina, Eml1 disruption caused abnormal positioning of photoreceptor cell nuclei early in development. Upon maturation, these ectopic photoreceptors possessed cilia and formed synapses but failed to produce robust outer segments, implying a late defect in photoreceptor differentiation secondary to mislocalization. In addition, abnormal positioning of Müller cell bodies and bipolar cells was evident throughout the inner neuroblastic layer. Basal displacement of mitotic nuclei in the retinal neuroepithelium was observed in tvrm360 mice at postnatal day 0. The abnormal positioning of retinal progenitor cells at birth and ectopic presence of photoreceptors and secondary neurons upon maturation suggest that EML1 functions early in eye development and is crucial for proper retinal lamination during cellular proliferation and development

    A Splicing Mutation in Slc4a5 Results in Retinal Detachment and Retinal Pigment Epithelium Dysfunction

    Get PDF
    Fluid and solute transporters of the retinal pigment epithelium (RPE) are core components of the outer blood-retinal barrier. Characterizing these transporters and their role in retinal homeostasis may provide insights into ocular function and disease. Here, we describe RPE defects in tvrm77 mice, which exhibit hypopigmented patches in the central retina. Mapping and nucleotide sequencing of tvrm77 mice revealed a disrupted 5\u27 splice donor sequence in Slc4a5, a sodium bicarbonate cotransporter gene. Slc4a5 expression was reduced 19.7-fold in tvrm77 RPE relative to controls, and alternative splice variants were detected. SLC4A5 was localized to the Golgi apparatus of cultured human RPE cells and in apical and basal membranes. Fundus imaging, optical coherence tomography, microscopy, and electroretinography (ERG) of tvrm77 mice revealed retinal detachment, hypopigmented patches corresponding to neovascular lesions, and retinal folds. Detachment worsened and outer nuclear layer thickness decreased with age. ERG a- and b-wave response amplitudes were initially normal but declined in older mice. The direct current ERG fast oscillation and light peak were reduced in amplitude at all ages, whereas other RPE-associated responses were unaffected. These results link a new Slc4a5 mutation to subretinal fluid accumulation and altered light-evoked RPE electrophysiological responses, suggesting that SLC4A5 functions at the outer blood-retinal barrier

    Identification of Arhgef12 and Prkci as genetic modifiers of retinal dysplasia in the Crb1rd8 mouse model.

    Get PDF
    Mutations in the apicobasal polarity gene CRB1 lead to diverse retinal diseases, such as Leber congenital amaurosis, cone-rod dystrophy, retinitis pigmentosa (with and without Coats-like vasculopathy), foveal retinoschisis, macular dystrophy, and pigmented paravenous chorioretinal atrophy. Limited correlation between disease phenotypes and CRB1 alleles, and evidence that patients sharing the same alleles often present with different disease features, suggest that genetic modifiers contribute to clinical variation. Similarly, the retinal phenotype of mice bearing the Crb1 retinal degeneration 8 (rd8) allele varies with genetic background. Here, we initiated a sensitized chemical mutagenesis screen in B6.Cg-Crb1rd8/Pjn, a strain with a mild clinical presentation, to identify genetic modifiers that cause a more severe disease phenotype. Two models from this screen, Tvrm266 and Tvrm323, exhibited increased retinal dysplasia. Genetic mapping with high-throughput exome and candidate-gene sequencing identified causative mutations in Arhgef12 and Prkci, respectively. Epistasis analysis of both strains indicated that the increased dysplastic phenotype required homozygosity of the Crb1rd8 allele. Retinal dysplastic lesions in Tvrm266 mice were smaller and caused less photoreceptor degeneration than those in Tvrm323 mice, which developed an early, large diffuse lesion phenotype. At one month of age, Müller glia and microglia mislocalization at dysplastic lesions in both modifier strains was similar to that in B6.Cg-Crb1rd8/Pjn mice but photoreceptor cell mislocalization was more extensive. External limiting membrane disruption was comparable in Tvrm266 and B6.Cg-Crb1rd8/Pjn mice but milder in Tvrm323 mice. Immunohistological analysis of mice at postnatal day 0 indicated a normal distribution of mitotic cells in Tvrm266 and Tvrm323 mice, suggesting normal early development. Aberrant electroretinography responses were observed in both models but functional decline was significant only in Tvrm323 mice. These results identify Arhgef12 and Prkci as modifier genes that differentially shape Crb1-associated retinal disease, which may be relevant to understanding clinical variability and underlying disease mechanisms in humans

    Taxonomic assessment of two wild house mouse subspecies using whole-genome sequencing

    Get PDF
    Abstract The house mouse species complex (Mus musculus) is comprised of three primary subspecies. A large number of secondary subspecies have also been suggested on the basis of divergent morphology and molecular variation at limited numbers of markers. While the phylogenetic relationships among the primary M. musculus subspecies are well-defined, relationships among secondary subspecies and between secondary and primary subspecies remain less clear. Here, we integrate de novo genome sequencing of museum-stored specimens of house mice from one secondary subspecies (M. m. bactrianus) and publicly available genome sequences of house mice previously characterized as M. m. helgolandicus, with whole genome sequences from diverse representatives of the three primary house mouse subspecies. We show that mice assigned to the secondary M. m. bactrianus and M. m. helgolandicus subspecies are not genetically differentiated from M. m. castaneus and M. m. domesticus, respectively. Overall, our work suggests that the M. m. bactrianus and M. m. helgolandicus subspecies are not well-justified taxonomic entities, emphasizing the importance of leveraging whole-genome sequence data to inform subspecies designations. Additionally, our investigation provides tailored experimental procedures for generating whole genome sequences from air-dried mouse skins, along with key genomic resources to inform future genomic studies of wild mouse diversity

    A FRMD4B variant suppresses dysplastic photoreceptor lesions in models of enhanced S-cone syndrome and of Nrl deficiency.

    No full text
    Photoreceptor dysplasia, characterized by formation of folds and (pseudo-) rosettes in the outer retina, is associated with loss of functional nuclear receptor subfamily 2 group E member 3 (NR2E3) and neural retina leucine-zipper (NRL) in both humans and mice. A sensitized chemical mutagenesis study to identify genetic modifiers that suppress photoreceptor dysplasia in Nr2e3rd7 mutant mice identified line Tvrm222, which exhibits a normal fundus appearance in the presence of the rd7 mutation. The Tvrm222 modifier of Nr2e3rd7/rd7 was localized to Chromosome 6 and identified as a missense mutation in the FERM domain containing 4B (Frmd4b) gene. The variant is predicted to cause the substitution of a serine residue 938 with proline (S938P). The Frmd4bTvrm222 allele was also found to suppress outer nuclear layer (ONL) rosettes in Nrl-/- mice. Fragmentation of the external limiting membrane (ELM), normally observed in rd7 and Nrl-/- mouse retinas, was absent in the presence of the Frmd4bTvrm222 allele. FRMD4B, a binding partner of cytohesin 3, is proposed to participate in cell junction remodeling. Its biological function in photoreceptor dysplasia has not been previously examined. In vitro experiments showed that the FRMD4B938P variant fails to be efficiently recruited to the cell surface upon insulin stimulation. In addition, we found a reduction in AKT phosphorylation and increased levels of cell junction proteins, CTNNB1 and TJP1, associated with the cell membrane in Tvrm222 retinas. Taken together, this study reveals a critical role of FRMD4B in maintaining ELM integrity and in rescuing morphological abnormalities of the ONL in photoreceptor dysplasia

    Genetic modifier loci of mouse Mfrp(rd6) identified by quantitative trait locus analysis.

    No full text
    The identification of genes that modify pathological ocular phenotypes in mouse models may improve our understanding of disease mechanisms and lead to new treatment strategies. Here, we identify modifier loci affecting photoreceptor cell loss in homozygous Mfrp(rd6) mice, which exhibit a slowly progressive photoreceptor degeneration. A cohort of 63 F2 homozygous Mfrp(rd6) mice from a (B6.C3Ga-Mfrp(rd6)/J × CAST/EiJ) F1 intercross exhibited a variable number of cell bodies in the retinal outer nuclear layer at 20 weeks of age. Mice were genotyped with a panel of single nucleotide polymorphism markers, and genotypes were correlated with phenotype by quantitative trait locus (QTL) analysis to map modifier loci. A genome-wide scan revealed a statistically significant, protective candidate locus on CAST/EiJ Chromosome 1 and suggestive modifier loci on Chromosomes 6 and 11. Multiple regression analysis of a three-QTL model indicated that the modifier loci on Chromosomes 1 and 6 together account for 26% of the observed phenotypic variation, while the modifier locus on Chromosome 11 explains only an additional 4%. Our findings indicate that the severity of the Mfrp(rd6) retinal degenerative phenotype in mice depends on the strain genetic background and that a significant modifier locus on CAST/EiJ Chromosome 1 protects against Mfrp(rd6)-associated photoreceptor loss. Exp Eye Res 2014; 118:30-35

    Single-Cell RNA Sequencing Reveals Molecular Features of Heterogeneity in the Murine Retinal Pigment Epithelium

    Get PDF
    Transcriptomic analysis of the mammalian retinal pigment epithelium (RPE) aims to identify cellular networks that influence ocular development, maintenance, function, and disease. However, available evidence points to RPE cell heterogeneity within native tissue, which adds complexity to global transcriptomic analysis. Here, to assess cell heterogeneity, we performed single-cell RNA sequencing of RPE cells from two young adult male C57BL/6J mice. Following quality control to ensure robust transcript identification limited to cell singlets, we detected 13,858 transcripts among 2667 and 2846 RPE cells. Dimensional reduction by principal component analysis and uniform manifold approximation and projection revealed six distinct cell populations. All clusters expressed transcripts typical of RPE cells; the smallest (C1, containing 1–2% of total cells) exhibited the hallmarks of stem and/or progenitor (SP) cells. Placing C1–6 along a pseudotime axis suggested a relative decrease in melanogenesis and SP gene expression and a corresponding increase in visual cycle gene expression upon RPE maturation. K-means clustering of all detected transcripts identified additional expression patterns that may advance the understanding of RPE SP cell maintenance and the evolution of cellular metabolic networks during development. This work provides new insights into the transcriptome of the mouse RPE and a baseline for identifying experimentally induced transcriptional changes in future studies of this tissue

    Gene Profiling of Postnatal Mfrprd6 Mutant Eyes Reveals Differential Accumulation of Prss56, Visual Cycle and Phototransduction mRNAs.

    No full text
    Mutations in the membrane frizzled-related protein (MFRP/Mfrp) gene, specifically expressed in the retinal pigment epithelium (RPE) and ciliary body, cause nanophthalmia or posterior microphthalmia with retinitis pigmentosa in humans, and photoreceptor degeneration in mice. To better understand MFRP function, microarray analysis was performed on eyes of homozygous Mfrprd6 and C57BL/6J mice at postnatal days (P) 0 and P14, prior to photoreceptor loss. Data analysis revealed no changes at P0 but significant differences in RPE and retina-specific transcripts at P14, suggesting a postnatal influence of the Mfrprd6 allele. A subset of these transcripts was validated by quantitative real-time PCR (qRT-PCR). In Mfrprd6 eyes, a significant 1.5- to 2.0-fold decrease was observed among transcripts of genes linked to retinal degeneration, including those involved in visual cycle (Rpe65, Lrat, Rgr), phototransduction (Pde6a, Guca1b, Rgs9), and photoreceptor disc morphogenesis (Rpgrip1 and Fscn2). Levels of RPE65 were significantly decreased by 2.0-fold. Transcripts of Prss56, a gene associated with angle-closure glaucoma, posterior microphthalmia and myopia, were increased in Mfrprd6 eyes by 17-fold. Validation by qRT-PCR indicated a 3.5-, 14- and 70-fold accumulation of Prss56 transcripts relative to controls at P7, P14 and P21, respectively. This trend was not observed in other RPE or photoreceptor mutant mouse models with similar disease progression, suggesting that Prss56 upregulation is a specific attribute of the disruption of Mfrp. Prss56 and Glul in situ hybridization directly identified Müller glia in the inner nuclear layer as the cell type expressing Prss56. In summary, the Mfrprd6 allele causes significant postnatal changes in transcript and protein levels in the retina and RPE. The link between Mfrp deficiency and Prss56 up-regulation, together with the genetic association of human MFRP or PRSS56 variants and ocular size, raises the possibility that these genes are part of a regulatory network influencing postnatal posterior eye development. PLoS One 2014 Oct 30; 9(10):e110299

    A mutagenesis-derived Lrp5 mouse mutant with abnormal retinal vasculature and low bone mineral density.

    No full text
    PURPOSE: Familial exudative vitreoretinopathy (FEVR) is caused by mutations in the genes encoding low-density lipoprotein receptor-related protein (LRP5) or its interacting partners, namely frizzled class receptor 4 (FZD4) and norrin cystine knot growth factor (NDP). Mouse models for Lrp5, Fzd4, and Ndp have proven to be important for understanding the retinal pathophysiology underlying FEVR and systemic abnormalities related to defective Wnt signaling. Here, we report a new mouse mutant, tvrm111B, which was identified by electroretinogram (ERG) screening of mice generated in the Jackson Laboratory Translational Vision Research Models (TVRM) mutagenesis program. METHODS: ERGs were used to examine outer retinal physiology. The retinal vasculature was examined by in vivo retinal imaging, as well as by histology and immunohistochemistry. The tvrm111B locus was identified by genetic mapping of mice generated in a cross to DBA/2J, and subsequent sequencing analysis. Gene expression was examined by real-time PCR of retinal RNA. Bone mineral density (BMD) was examined by peripheral dual-energy X-ray absorptiometry. RESULTS: The tvrm111B allele is inherited as an autosomal recessive trait. Genetic mapping of the decreased ERG b-wave phenotype of tvrm111B mice localized the mutation to a region on chromosome 19 that included Lrp5. Sequencing of Lrp5 identified the insertion of a cytosine (c.4724_4725insC), which is predicted to cause a frameshift that disrupts the last three of five conserved PPPSPxS motifs in the cytoplasmic domain of LRP5, culminating in a premature termination. In addition to a reduced ERG b-wave, Lrp5(tvrm111B) homozygotes have low BMD and abnormal features of the retinal vasculature that have been reported previously in Lrp5 mutant mice, including persistent hyaloid vessels, leakage on fluorescein angiography, and an absence of the deep retinal capillary bed. CONCLUSIONS: The phenotype of the Lrp5(tvrm111B) mutant includes abnormalities of the retinal vasculature and of BMD. This model may be a useful resource to further our understanding of the biological role of LRP5 and to evaluate experimental therapies for FEVR or other conditions associated with LRP5 dysfunction. Mol Vis 2017 Mar 18; 23:140-148
    corecore