3 research outputs found

    Identifying the stressors impacting rescued avian wildlife

    Get PDF
    Urbanisation exposes avian wildlife to an array of environmental stressors that result in clinical admission and hospitalisation. The aim of this pilot study was to conduct a retrospective analysis of clinical data and characterise this based on categories of stress experienced by avian wildlife patients. The results from this study indicated that impact injuries (n = 33, 25%) and vehicle-related injuries (n = 33, 25%) were the most common occurring preliminary stressors that resulted in the hospitalisation of avian wildlife. The most common outcome of avian patients that suffered from vehicle-related injuries was euthanasia (n = 15, 45%), as was avian patients that suffered from impact injuries (n = 16, 48%). Immobility (n = 105, 61%) and abnormal behaviour (n = 24, 14%) were the most commonly occurring primary stressors of avian patients. Finally, trauma (n = 51, 32%) and fractures (n = 44, 27%) were the most common occurring secondary stressors in avian patients. The most common outcome of all these stressors was euthanasia. This study provided further evidence towards the notion that human- and urbanisation-related stressors are the main causes of hospitalisation of avian wildlife, but also indicated that birds admitted as a result of human-related stressors are more likely to be euthanised than released. This study also provided a categorisation system for the stressors identified in avian wildlife patients (preliminary, primary and secondary) that may be used to monitor the stress categories of wildlife patients and gain a deeper understanding of the complex notion of stress

    A 29-year retrospective analysis of koala rescues in New South Wales, Australia

    Get PDF
    The koala (Phascolarctos cinereus) is currently listed by both the IUCN and the Australian Governments’ Threatened Species Scientific Committee as vulnerable to extinction with an overall decreasing population trend. It is unknown exactly how many koalas remain in the wild, but it is known that habitat fragmentation and bushfires have ultimately contributed to the decline of the koala all over Australia. This novel study is a retrospective analysis of data over a 29-year period (1989–2018) using records for 12,543 sightings and clinical care admissions for wild koalas from the major koala hot-spots (Port Stephens, port Macquarie and Lismore) in New South Wales, Australia. This study aims to understand the long-term patterns and trends of key stressors that are contributing to the decline of koalas in New South Wales, and the synergic interactions of factors such as rescue location, sex and age of the koala, and if their decline is influenced progressively by year. The main findings of this retrospective analysis indicated that between all 3 rescue sites, the most common prognosis was disease, the most common disease was signs of chlamydia, and the most common outcome was release. The location where the highest number of koalas were found prior to being reported as sighted or admitted into clinical care was within the regional area of Lismore. Furthermore, sex was not a discriminating factor when it came to prognosis or outcome, but age was significant. Finally, incidents of disease were found to increase over long-term, whereas release decreased over time and euthanasia increased. The wealth of data available to us and the retrospective analysis enabled us in a way to ‘zoom out’ and reveal how the key environmental stressors have fluctuated spatially and temporally. In conclusion, our data provides strong evidence of added pressures of increased human population growth in metropolitan zones, which increases risks of acute environmental trauma and proximate stressors such as vehicle collisions and dog-attacks as well as increased sightings of virtually healthy koalas found in exposed environments. Thus our ‘zoom out’ approach provides support that there is an urgent need to strengthen on-ground management, bushfire control regimes, environmental planning and governmental policy actions that should hopefully reduce the proximate environmental stressors in a step wise approach. This will ensure that in the next decade (beyond 2020), NSW koalas will hopefully start to show reversed trends and patterns in exposure to environmental trauma and disease, and population numbers will return towards recovery and stability

    Cortisol measurement in Koala (Phascolartos Cinereus) fur

    No full text
    Optimal methods of hormone extraction used to measure stress in animals across sample types are not always the same. Australia's iconic marsupial species, the koala (Phascolarctos cinereus), faces prolonged exposure to anthropogenic-induced stressors and assessment of chronic stress in wild populations is urgently warranted. One of the most effective ways to measure chronic stress is through analyzing the glucocorticoid hormone cortisol in hair or fur, as it supports physiological and behavioral responses. This laboratory validation study aims to test current techniques to validate an optimal hormone extraction method to be used as a non-invasive measure of cortisol in koala fur. It is recognized that using non-invasive techniques to measure stress hormones is preferred over traditional, invasive techniques due to their ideal practical and ethical standpoints. Additionally, it is comparatively easier to acquire fur from koalas than it is to acquire samples of their blood. This study used samples of koala fur acquired from the Adelaide Koala and Wildlife Hospital to run a number of hormone extraction techniques in an attempt to validate an optimal cortisol extraction method. Results showed that 100% methanol provided the most optimal solvent extraction compared to 100% ethanol or 100% isopropanol based on parallelism results. In conclusion, this method of cortisol extraction from koala fur provided a reliable non-invasive assay that could be used to study chronic stress in koalas
    corecore