292 research outputs found

    Gegenbauer-solvable quantum chain model

    Full text link
    In an innovative inverse-problem construction the measured, experimental energies E1E_1, E2E_2, ...ENE_N of a quantum bound-state system are assumed fitted by an N-plet of zeros of a classical orthogonal polynomial fN(E)f_N(E). We reconstruct the underlying Hamiltonian HH (in the most elementary nearest-neighbor-interaction form) and the underlying Hilbert space H{\cal H} of states (the rich menu of non-equivalent inner products is offered). The Gegenbauer's ultraspherical polynomials fn(x)=Cnα(x)f_n(x)=C_n^\alpha(x) are chosen for the detailed illustration of technicalities.Comment: 29 pp., 1 fi

    Radiation Damping in FRW Space-times with Different Topologies

    Get PDF
    We study the role played by the compactness and the degree of connectedness in the time evolution of the energy of a radiating system in the Friedmann-Robertson-Walker (FRW) space-times whose t=constt=const spacelike sections are the Euclidean 3-manifold R3{\cal R}^3 and six topologically non-equivalent flat orientable compact multiply connected Riemannian 3-manifolds. An exponential damping of the energy E(t)E(t) is present in the R3{\cal R}^3 case, whereas for the six compact flat 3-spaces it is found basically the same pattern for the evolution of the energy, namely relative minima and maxima occurring at different times (depending on the degree of connectedness) followed by a growth of E(t)E(t). Likely reasons for this divergent behavior of E(t)E(t) in these compact flat 3-manifolds are discussed and further developments are indicated. A misinterpretation of Wolf's results regarding one of the six orientable compact flat 3-manifolds is also indicated and rectified.Comment: 13 pages, RevTeX, 5 figures, To appear in Phys. Rev. D 15, vol. 57 (1998

    PT-symetrically regularized Eckart,Poeschl-Teller and Hulthen potentials

    Full text link
    Version 1: The well known Eckart's singular s-wave potential is PT-symmetrically regularized and continued to the whole real line. The new model remains exactly solvable and its bound states remain proportional to Jacobi polynomials. Its real and discrete spectrum exhibits several unusual features. Version 2: Parity times time-reversal symmetry of complex Hamiltonians with real spectra is usually interpreted as a weaker mathematical substitute for Hermiticity. Perhaps an equally important role is played by the related strengthened analyticity assumptions. In a constructive illustration we complexify a few potentials solvable only in s-wave. Then we continue their domain from semi-axis to the whole axis and get the new exactly solvable models. Their energies come out real as expected. The new one-dimensional spectra themselves differ quite significantly from their s-wave predecessors.Comment: Original 10-page letter ``PT-symmetrized exact solution of the singular Eckart oscillator" is extended to a full pape

    Calculating all elements of minimal index in the infinite parametric family of simplest quartic fields

    Get PDF
    summary:It is a classical problem in algebraic number theory to decide if a number field is monogeneous, that is if it admits power integral bases. It is especially interesting to consider this question in an infinite parametric family of number fields. In this paper we consider the infinite parametric family of simplest quartic fields KK generated by a root ξ\xi of the polynomial Pt(x)=x4tx36x2+tx+1P_t(x)=x^4-tx^3-6x^2+tx+1, assuming that t>0t>0, t3t\neq 3 and t2+16t^2+16 has no odd square factors. In addition to generators of power integral bases we also calculate the minimal index and all elements of minimal index in all fields in this family

    Non-Hermitian matrix description of the PT symmetric anharmonic oscillators

    Full text link
    Schroedinger equation H \psi=E \psi with PT - symmetric differential operator H=H(x) = p^2 + a x^4 + i \beta x^3 +c x^2+i \delta x = H^*(-x) on L_2(-\infty,\infty) is re-arranged as a linear algebraic diagonalization at a>0. The proof of this non-variational construction is given. Our Taylor series form of \psi complements and completes the recent terminating solutions as obtained for certain couplings \delta at the less common negative a.Comment: 18 pages, latex, no figures, thoroughly revised (incl. title), J. Phys. A: Math. Gen., to appea

    An exactly solvable quantum-lattice model with a tunable degree of nonlocality

    Full text link
    An array of N subsequent Laguerre polynomials is interpreted as an eigenvector of a non-Hermitian tridiagonal Hamiltonian HH with real spectrum or, better said, of an exactly solvable N-site-lattice cryptohermitian Hamiltonian whose spectrum is known as equal to the set of zeros of the N-th Laguerre polynomial. The two key problems (viz., the one of the ambiguity and the one of the closed-form construction of all of the eligible inner products which make HH Hermitian in the respective {\em ad hoc} Hilbert spaces) are discussed. Then, for illustration, the first four simplest, kk-parametric definitions of inner products with k=0,k=1,k=2k=0,k=1,k=2 and k=3k=3 are explicitly displayed. In mathematical terms these alternative inner products may be perceived as alternative Hermitian conjugations of the initial N-plet of Laguerre polynomials. In physical terms the parameter kk may be interpreted as a measure of the "smearing of the lattice coordinates" in the model.Comment: 35 p

    Optical investigation on the electronic structures of Y_{2}Ru_{2}O_{7}, CaRuO_{3}, SrRuO_{3}, and Bi_{2}Ru_{2}O_{7}

    Full text link
    We investigated the electronic structures of the bandwidth-controlled ruthenates, Y2_{2}Ru2_{2}O7_{7}, CaRuO3_{3}, SrRuO3_{3}, and Bi2_{2}Ru2% _{2}O7_{7}, by optical conductivity analysis in a wide energy region of 5 meV \sim 12 eV. We could assign optical transitions from the systematic changes of the spectra and by comparison with the O 1ss x-ray absorption data. We estimated some physical parameters, such as the on-site Coulomb repulsion energy and the crystal-field splitting energy. These parameters show that the 4dd orbitals should be more extended than 3dd ones. These results are also discussed in terms of the Mott-Hubbard model.Comment: 12 pages (1 table), 3 figure

    Symbolic computer language for multibody systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76245/1/AIAA-20770-590.pd
    corecore