37 research outputs found

    Cell type-specific regulation of CCN2 protein expression by PI3K–AKT–FoxO signaling

    Get PDF
    The biological activity of connective tissue growth factor (CTGF, CCN2) is regulated at the level of intracellular signaling leading to gene expression, and by its extracellular interaction partners which determine the functional outcome of CCN2 action. In this overview, we summarize the data which provide evidence that one of the major signaling pathways, phosphatidylinositol-3 kinase (PI3K)–AKT signaling, shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In smooth muscle cells, fibroblasts, and epithelial cells, inhibition of this pathway either reduced CCN2 expression or was not involved in CCN2 gene expression depending on the stimulus used. In microvascular endothelial cells by contrast, activation of PI3K–AKT signaling was inversely related to CCN2 expression. Upregulation of CCN2 upon inhibition of PI3K–AKT was also observed in primary cultures of human endothelial cells (HUVEC) exposed to laminar flow in an in vitro flow-through system. In different types of endothelial cells, FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression. In HUVEC, we observed a correlation between enhanced nuclear localization of FoxO1 and increased synthesis of CCN2 protein in areas of non-uniform shear stress. These data indicate that FoxO proteins are key regulators of CCN2 gene expression which determine the effect of PI3K–AKT activation in terms of CCN2 regulation. Short summary Phosphatidylinositol-3 kinase (PI3K)–AKT signaling shows a remarkable cell type-dependence in terms of regulation of CCN2 expression. In endothelial cells activation of PI3K - AKT signaling was inversely related to CCN2 expression. FoxO transcription factors, which are negatively regulated by AKT, were identified as potent activators of CCN2 gene expression

    Connective Tissue Growth Factor in Regulation of RhoA Mediated Cytoskeletal Tension Associated Osteogenesis of Mouse Adipose-Derived Stromal Cells

    Get PDF
    Background: Cytoskeletal tension is an intracellular mechanism through which cells convert a mechanical signal into a biochemical response, including production of cytokines and activation of various signaling pathways. Methods/Principal Findings: Adipose-derived stromal cells (ASCs) were allowed to spread into large cells by seeding them at a low-density (1,250 cells/cm 2), which was observed to induce osteogenesis. Conversely, ASCs seeded at a high-density (25,000 cells/cm 2) featured small cells that promoted adipogenesis. RhoA and actin filaments were altered by changes in cell size. Blocking actin polymerization by Cytochalasin D influenced cytoskeletal tension and differentiation of ASCs. To understand the potential regulatory mechanisms leading to actin cytoskeletal tension, cDNA microarray was performed on large and small ASCs. Connective tissue growth factor (CTGF) was identified as a major regulator of osteogenesis associated with RhoA mediated cytoskeletal tension. Subsequently, knock-down of CTGF by siRNA in ASCs inhibited this osteogenesis. Conclusions/Significance: We conclude that CTGF is important in the regulation of cytoskeletal tension mediated AS

    Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?

    Full text link

    Role of Erythropoietin Receptor Signaling in Macrophages or Choroidal Endothelial Cells in Choroidal Neovascularization

    No full text
    Erythropoietin (EPO) has been proposed to reduce the progression of atrophic age-related macular degeneration (AMD) due to its potential role in neuroprotection. However, overactive EPO receptor (EPOR) signaling increased laser-induced choroidal neovascularization (CNV) and choroidal macrophage number in non-lasered mice, which raised the question of whether EPOR signaling increased CNV through the recruitment of macrophages to the choroid that released pro-angiogenic factors or through direct angiogenic effects on endothelial cells. In this study, we addressed the hypothesis that EPOR signaling increased CNV by direct effects on macrophages or endothelial cells. We used tamoxifen-inducible macrophage-specific or endothelial cell-specific EPOR knockout mice in the laser-induced CNV model, and cultured choroidal endothelial cells isolated from adult human donors. We found that macrophage-specific knockout of EPOR influenced laser-induced CNV in females only, whereas endothelial-specific knockout of EPOR reduced laser-induced CNV in male mice only. In cultured human choroidal endothelial cells, knockdown of EPOR reduced EPO-induced signal transducer and activator of transcription 3 (STAT3) activation. Taken together, our findings suggest that EPOR signaling in macrophages or choroidal endothelial cells regulates the development of CNV in a sex-dependent manner. Further studies regarding the role of EPO-induced signaling are required to assess EPO safety and to select or develop appropriate therapeutic approaches
    corecore