30 research outputs found

    Analyzing shell structure from Babylonian and modern times

    Full text link
    We investigate ``shell structure'' from Babylonian times: periodicities and beats in computer-simulated lunar data corresponding to those observed by Babylonian scribes some 2500 years ago. We discuss the mathematical similarity between the Babylonians' recently reconstructed method of determining one of the periods of the moon with modern Fourier analysis and the interpretation of shell structure in finite fermion systems (nuclei, metal clusters, quantum dots) in terms of classical closed or periodic orbits.Comment: LaTeX2e, 13pp, 8 figs; contribution to 10th Nuclear Physics Workshop "Marie and Pierre Curie", 24 - 28 Sept. 2003, Kazimierz Dolny (Poland); final version accepted for J. Mod. Phys.

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter Îł\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements

    No full text
    An analysis of Lunar Laser Ranging (LLR) observations from January 1972 until April 2001 has been performed, and a new solution for the lunar orbital motion and librations has been constructed that has been named S2001. With respect to prior solutions, improvements in the statistical treatment of the data, new nutation and libration models and the addition of the positions of the observing stations to the list of fitted parameters have been introduced. Globally, for recent observations, our rms (root mean square error) is within 2 to 3 centimeters in the lunar distance. Special attention has been paid to the determination of the correction to the IAU76 luni-solar constant of precession, and the value of the secular acceleration of the Moon's longitude due to the tidal forces. The main results are: –  correction to the constant of precession: Δp\Delta p = -0.302 ± 0.003′′/cy0.003 ''/{\rm cy}, –  tidal acceleration of the lunar longitude: Γ = -25.858 ± 0.003′′/cy20.003 ''/{\rm cy}^{2}. The positions and velocities of the stations have also been determined. The results are consistent with the ITRF2000 determinations from SLR observations. The lunar theory ELP is referred to a dynamical system and introduces the inertial mean ecliptic of J2000.0. The positioning of the reference system of the theory with respect to ICRS is performed (and also with respect to some useful JPL numerical integrations). Finally the orientation of the celestial axes with respect to the ICRS reference system has been derived as well as the offsets of the Celestial Ephemeris Pole
    corecore