178 research outputs found

    Nuclear spin conversion in formaldehyde

    Get PDF
    Theoretical model of the nuclear spin conversion in formaldehyde (H2CO) has been developed. The conversion is governed by the intramolecular spin-rotation mixing of molecular ortho and para states. The rate of conversion has been found equal 1.4*10^{-4}~1/s*Torr. Temperature dependence of the spin conversion has been predicted to be weak in the wide temperature range T=200-900 K.Comment: REVTEX, 16 pages + 5 eps figure

    New access to very weak interactions in molecules

    Get PDF
    It is predicted that nuclear spin conversion in molecules can be efficiently controlled by strong laser radiation resonant to rovibrational molecular transition. The phenomenon can be used for substantial enrichment of spin isomers, or for detection of very weak (10-100 Hz) interactions in molecules.Comment: REVTEX, 11 pages + 4 eps figure

    Enrichment of CH3F nuclear spin isomers by resonant microwave radiation

    Get PDF
    Theoretical model of the coherent control of nuclear spin isomers by microwave radiation has been developed. Model accounts the M-degeneracy of molecular states and molecular center-of-mass motion. The model has been applied to the 13CH3F molecules. Microwave radiation excites the para state (J=11,K=1) which is mixed by the nuclear spin-spin interaction with the ortho state (9,3). Dependencies of the isomer enrichment and conversion rates on the radiation frequency have been calculated. Both spectra consist of two resonances situated at the centers of allowed and forbidden (by nuclear spin) transitions in the molecule. Larger enrichment, up to 7%, can be produced by strong radiation resonant to the forbidden transition. The spin conversion rate can be increased by 2 orders of magnitude at this resonance.Comment: REVTEX, 14 pages + 6 eps figure

    Coherent control of enrichment and conversion of molecular spin isomers

    Get PDF
    A theoretical model of nuclear spin conversion in molecules controlled by an external electromagnetic radiation resonant to rotational transition has been developed. It has been shown that one can produce an enrichment of spin isomers and influence their conversion rates in two ways, through coherences and through level population change induced by radiation. Influence of conversion is ranged from significant speed up to almost complete inhibition of the process by proper choice of frequency and intensity of the external field.Comment: REVTEX, 13 pages + 6 eps figure
    • …
    corecore